{"title":"Pathway-like Activation of 3D Neuronal Constructs with an Optical Interface.","authors":"Saeed Omidi, Yevgeny Berdichevsky","doi":"10.3390/bios15030179","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional neuronal organoids, spheroids, and tissue mimics are increasingly used to model cognitive processes in vitro. These 3D constructs are also used to model the effects of neurological and psychiatric disorders and to perform computational tasks. The brain's complex network of neurons is activated via feedforward sensory pathways. Therefore, an interface to 3D constructs that models sensory pathway-like inputs is desirable. In this work, an optical interface for 3D neuronal constructs was developed. Dendrites and axons extended by cortical neurons within the 3D constructs were guided into microchannel-confined bundles. These neurite bundles were then optogenetically stimulated, and evoked responses were evaluated by calcium imaging. Optical stimulation was designed to deliver distinct input patterns to the network in the 3D construct, mimicking sensory pathway inputs to cortical areas in the intact brain. Responses of the network to the stimulation possessed features of neuronal population code, including separability by input pattern and mixed selectivity of individual neurons. This work represents the first demonstration of a pathway-like activation of networks in 3D constructs. Another innovation of this work is the development of an all-optical interface to 3D neuronal constructs, which does not require the use of expensive microelectrode arrays. This interface may enable the use of 3D neuronal constructs for investigations into cortical information processing. It may also enable studies into the effects of neurodegenerative or psychiatric disorders on cortical computation.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional neuronal organoids, spheroids, and tissue mimics are increasingly used to model cognitive processes in vitro. These 3D constructs are also used to model the effects of neurological and psychiatric disorders and to perform computational tasks. The brain's complex network of neurons is activated via feedforward sensory pathways. Therefore, an interface to 3D constructs that models sensory pathway-like inputs is desirable. In this work, an optical interface for 3D neuronal constructs was developed. Dendrites and axons extended by cortical neurons within the 3D constructs were guided into microchannel-confined bundles. These neurite bundles were then optogenetically stimulated, and evoked responses were evaluated by calcium imaging. Optical stimulation was designed to deliver distinct input patterns to the network in the 3D construct, mimicking sensory pathway inputs to cortical areas in the intact brain. Responses of the network to the stimulation possessed features of neuronal population code, including separability by input pattern and mixed selectivity of individual neurons. This work represents the first demonstration of a pathway-like activation of networks in 3D constructs. Another innovation of this work is the development of an all-optical interface to 3D neuronal constructs, which does not require the use of expensive microelectrode arrays. This interface may enable the use of 3D neuronal constructs for investigations into cortical information processing. It may also enable studies into the effects of neurodegenerative or psychiatric disorders on cortical computation.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.