Thickness- and quality-controlled fabrication of fluorescence-targeted frozen-hydrated lamellae.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Daan B Boltje, Radim Skoupý, Clémence Taisne, Wiel H Evers, Arjen J Jakobi, Jacob P Hoogenboom
{"title":"Thickness- and quality-controlled fabrication of fluorescence-targeted frozen-hydrated lamellae.","authors":"Daan B Boltje, Radim Skoupý, Clémence Taisne, Wiel H Evers, Arjen J Jakobi, Jacob P Hoogenboom","doi":"10.1016/j.crmeth.2025.101004","DOIUrl":null,"url":null,"abstract":"<p><p>Cryogenic focused ion beam (FIB) milling is essential for fabricating thin lamella-shaped samples out of frozen-hydrated cells for high-resolution structure determination. Structural information can only be resolved at high resolution if the lamella thickness is between 100 and 200 nm. While the lamella fabrication workflow has improved significantly since its conception, quantitative, live feedback on lamella thickness, quality, and biological target inclusion remains lacking. Using coincident light microscopy integrated into the FIB scanning electron microscope (FIB-SEM), we present three strategies that enable accurate, live control during lamella fabrication. First, we combine four-dimensional (4D) STEM with fluorescence microscopy (FM) targeting to determine lamella thickness. Second, with reflected light microscopy (RLM), we screen target sites for ice contamination and monitor lamella thickness and protective Pt coating integrity during FIB milling. Third, we exploit thin-film interference for fine-grained feedback on thickness uniformity below 500 nm. Finally, we present a fluorescence-targeted, quality-controlled workflow for frozen-hydrated lamellae, benchmarked with excellent agreement with energy-filtered transmission electron microscopy (EFTEM) measurements and tomograms from electron cryotomography.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 3","pages":"101004"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic focused ion beam (FIB) milling is essential for fabricating thin lamella-shaped samples out of frozen-hydrated cells for high-resolution structure determination. Structural information can only be resolved at high resolution if the lamella thickness is between 100 and 200 nm. While the lamella fabrication workflow has improved significantly since its conception, quantitative, live feedback on lamella thickness, quality, and biological target inclusion remains lacking. Using coincident light microscopy integrated into the FIB scanning electron microscope (FIB-SEM), we present three strategies that enable accurate, live control during lamella fabrication. First, we combine four-dimensional (4D) STEM with fluorescence microscopy (FM) targeting to determine lamella thickness. Second, with reflected light microscopy (RLM), we screen target sites for ice contamination and monitor lamella thickness and protective Pt coating integrity during FIB milling. Third, we exploit thin-film interference for fine-grained feedback on thickness uniformity below 500 nm. Finally, we present a fluorescence-targeted, quality-controlled workflow for frozen-hydrated lamellae, benchmarked with excellent agreement with energy-filtered transmission electron microscopy (EFTEM) measurements and tomograms from electron cryotomography.

厚度和质量控制制备荧光靶向冷冻水合薄片。
低温聚焦离子束(FIB)铣削是制造薄片状样品的关键,从冷冻水合细胞为高分辨率的结构测定。只有当片层厚度在100 ~ 200nm之间时,结构信息才能以高分辨率分辨出来。虽然自其概念以来,片层制造工作流程有了显着改善,但对片层厚度、质量和生物靶点包含的定量实时反馈仍然缺乏。利用整合到FIB扫描电子显微镜(FIB- sem)中的准光显微镜,我们提出了三种策略,可以在薄片制造过程中实现精确的实时控制。首先,我们结合四维(4D) STEM和荧光显微镜(FM)靶向来确定片层厚度。其次,通过反射光显微镜(RLM),我们筛选了冰污染的目标位点,并监测了FIB铣削过程中薄片的厚度和保护Pt涂层的完整性。第三,我们利用薄膜干涉对500 nm以下的厚度均匀性进行细粒度反馈。最后,我们提出了一种荧光靶向的、质量控制的冷冻水合薄片工作流程,其基准与能量过滤透射电子显微镜(EFTEM)测量和电子冷冻断层扫描的层析成像非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信