Sunny Kwok, Xueliang Pan, Manqi Pan, Zihao Chen, Madison Ammon, Andrew Hendershot, Jun Liu
{"title":"Regional Biomechanical Weakening in Keratoconus Corneas Detected by In Vivo High-Frequency Ultrasound Elastography.","authors":"Sunny Kwok, Xueliang Pan, Manqi Pan, Zihao Chen, Madison Ammon, Andrew Hendershot, Jun Liu","doi":"10.1167/tvst.14.3.22","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In vivo biomechanical characterization of the cornea remains a challenge. We have developed a high-resolution ultrasound elastography technique, termed ocular pulse elastography (OPE), to measure corneal deformation in response to the intraocular pressure (IOP) pulsation at each heartbeat. In this study, we aimed to compare corneal axial strains (CASs) between patients with keratoconus and normal subjects and evaluate the spatial mapping of CAS in high grade keratoconus.</p><p><strong>Methods: </strong>Forty patients with keratoconus (63 eyes) and 40 normal controls (80 eyes) were enrolled in this study. Each eye underwent 4 ultrasound measurements using the Vevo2100 high-frequency ultrasound system. Each measurement acquired 1000 continuous B-mode scans in 8 seconds. Corneal axial displacements and strains were quantified using an ultrasound speckle tracking algorithm.</p><p><strong>Results: </strong>CAS magnitude was significantly higher in keratoconus than normal corneas (-0.13% ± 0.09% vs. -0.06% ± 0.04%, P < 0.001) with an increasing trend in higher grades (P < 0.001). CAS in keratoconus corneas had a greater spatial variance as higher strains were observed in the cone center than its surrounding regions in grade 3 and 4 keratoconus corneas.</p><p><strong>Conclusions: </strong>Our results showed that high-frequency ultrasound elastography was able to detect and quantify the larger deformation of keratoconus corneas than normal corneas in response to the natural fluctuations of IOP at each heartbeat, and it also detected the spatial variance showing greater deformation in the cone region.</p><p><strong>Translational relevance: </strong>High-resolution ultrasound may provide a sensitive tool for quick, spatially resolved characterization of corneal biomechanics to aid keratoconus detection and diagnosis.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 3","pages":"22"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.3.22","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In vivo biomechanical characterization of the cornea remains a challenge. We have developed a high-resolution ultrasound elastography technique, termed ocular pulse elastography (OPE), to measure corneal deformation in response to the intraocular pressure (IOP) pulsation at each heartbeat. In this study, we aimed to compare corneal axial strains (CASs) between patients with keratoconus and normal subjects and evaluate the spatial mapping of CAS in high grade keratoconus.
Methods: Forty patients with keratoconus (63 eyes) and 40 normal controls (80 eyes) were enrolled in this study. Each eye underwent 4 ultrasound measurements using the Vevo2100 high-frequency ultrasound system. Each measurement acquired 1000 continuous B-mode scans in 8 seconds. Corneal axial displacements and strains were quantified using an ultrasound speckle tracking algorithm.
Results: CAS magnitude was significantly higher in keratoconus than normal corneas (-0.13% ± 0.09% vs. -0.06% ± 0.04%, P < 0.001) with an increasing trend in higher grades (P < 0.001). CAS in keratoconus corneas had a greater spatial variance as higher strains were observed in the cone center than its surrounding regions in grade 3 and 4 keratoconus corneas.
Conclusions: Our results showed that high-frequency ultrasound elastography was able to detect and quantify the larger deformation of keratoconus corneas than normal corneas in response to the natural fluctuations of IOP at each heartbeat, and it also detected the spatial variance showing greater deformation in the cone region.
Translational relevance: High-resolution ultrasound may provide a sensitive tool for quick, spatially resolved characterization of corneal biomechanics to aid keratoconus detection and diagnosis.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.