In vitro co-culture of Fasciola hepatica newly excysted juveniles (NEJs) with 3D HepG2 spheroids permits novel investigation of host-parasite interactions.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-03-25 DOI:10.1080/21505594.2025.2482159
Aiste Vitkauskaite, Emma McDermott, Richard Lalor, Carolina De Marco Verissimo, Mahshid H Dehkordi, Kerry Thompson, Peter Owens, Howard Oliver Fearnhead, John Pius Dalton, Nichola Eliza Davies Calvani
{"title":"In vitro co-culture of <i>Fasciola hepatica</i> newly excysted juveniles (NEJs) with 3D HepG2 spheroids permits novel investigation of host-parasite interactions.","authors":"Aiste Vitkauskaite, Emma McDermott, Richard Lalor, Carolina De Marco Verissimo, Mahshid H Dehkordi, Kerry Thompson, Peter Owens, Howard Oliver Fearnhead, John Pius Dalton, Nichola Eliza Davies Calvani","doi":"10.1080/21505594.2025.2482159","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fasciola hepatica</i>, or liver fluke, causes fasciolosis in humans and livestock. Following ingestion of vegetation contaminated with encysted parasites, metacercariae, newly excysted juveniles (NEJ) excyst in the small intestine and cross the intestinal wall. After penetrating the liver, the parasite begins an intra-parenchymal migratory and feeding phase that not only drives their rapid growth and development but also causes extensive haemorrhaging and immune pathology. Studies on infection are hindered by the difficulty in accessing these microscopic juvenile parasites <i>in vivo</i>. Thus, a simple and scalable <i>in vitro</i> culture system for parasite development is needed. Here, we find that two-dimensional (2D) culture systems using cell monolayers support NEJ growth to a limited extent. By contrast, co-culture of <i>F. hepatica</i> NEJ with HepG2-derived 3D spheroids, or \"mini-livers,\" that more closely mimic the physiology and microenvironment of <i>in vivo</i> liver tissue, promoted NEJ survival, growth, and development. NEJ grazed on the peripheral cells of the spheroids, and they released temporally regulated digestive cysteine proteases, FhCL3, and FhCL1/2, similar to <i>in vivo</i> parasites. The 3D co-culture induced development of the NEJ gut and body musculature, and stimulated the tegument to elaborate spines and a variety of surface sensory/tango/chemoreceptor papillae (termed S1, S2, and S3); these were especially pronounced around the oral and ventral suckers that sense host chemical cues and secure the parasite in tissue. HepG2 3D spheroid/parasite co-culture methodologies should accelerate investigations into the understanding of <i>F. hepatica</i> NEJ developmental biology and studies on host-parasite interactions, and streamline the search for new anti-parasite interventions.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2482159"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2482159","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fasciola hepatica, or liver fluke, causes fasciolosis in humans and livestock. Following ingestion of vegetation contaminated with encysted parasites, metacercariae, newly excysted juveniles (NEJ) excyst in the small intestine and cross the intestinal wall. After penetrating the liver, the parasite begins an intra-parenchymal migratory and feeding phase that not only drives their rapid growth and development but also causes extensive haemorrhaging and immune pathology. Studies on infection are hindered by the difficulty in accessing these microscopic juvenile parasites in vivo. Thus, a simple and scalable in vitro culture system for parasite development is needed. Here, we find that two-dimensional (2D) culture systems using cell monolayers support NEJ growth to a limited extent. By contrast, co-culture of F. hepatica NEJ with HepG2-derived 3D spheroids, or "mini-livers," that more closely mimic the physiology and microenvironment of in vivo liver tissue, promoted NEJ survival, growth, and development. NEJ grazed on the peripheral cells of the spheroids, and they released temporally regulated digestive cysteine proteases, FhCL3, and FhCL1/2, similar to in vivo parasites. The 3D co-culture induced development of the NEJ gut and body musculature, and stimulated the tegument to elaborate spines and a variety of surface sensory/tango/chemoreceptor papillae (termed S1, S2, and S3); these were especially pronounced around the oral and ventral suckers that sense host chemical cues and secure the parasite in tissue. HepG2 3D spheroid/parasite co-culture methodologies should accelerate investigations into the understanding of F. hepatica NEJ developmental biology and studies on host-parasite interactions, and streamline the search for new anti-parasite interventions.

肝片吸虫新排出幼体(NEJs)与三维HepG2球体体外共培养允许对宿主-寄生虫相互作用进行新的研究。
肝片吸虫病,或肝吸虫,在人类和牲畜中引起片吸虫病。在摄入被囊性寄生虫、囊蚴污染的植被后,新囊性幼虫(NEJ)在小肠中囊出并穿过肠壁。穿透肝脏后,寄生虫开始实质内迁移和摄食阶段,这不仅推动了它们的快速生长和发育,而且引起广泛的出血和免疫病理。难以在体内接触到这些微小的幼年寄生虫,阻碍了对感染的研究。因此,需要一种简单且可扩展的寄生虫体外培养系统。在这里,我们发现使用细胞单层的二维(2D)培养系统在有限程度上支持NEJ生长。相比之下,肝F. NEJ与hepg2衍生的3D球体或“迷你肝脏”共同培养,更接近模拟体内肝组织的生理和微环境,促进了NEJ的存活、生长和发育。NEJ在球体的外周细胞上放牧,它们释放暂时调节的消化半胱氨酸蛋白酶FhCL3和FhCL1/2,类似于体内寄生虫。3D共培养诱导了NEJ肠道和身体肌肉组织的发育,并刺激了被皮发育成精细的棘和各种表面感觉/tango/化学受体乳头(称为S1, S2和S3);这些在口腔和腹部吸盘周围尤其明显,它们能感知宿主的化学信号,并将寄生虫固定在组织中。HepG2 3D球体/寄生虫共培养方法将加速对肝双歧杆菌NEJ发育生物学的理解和宿主-寄生虫相互作用的研究,并简化新的抗寄生虫干预措施的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信