Molecular design of dynamically thermoresponsive biomaterials.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Science and Technology of Advanced Materials Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.1080/14686996.2025.2475736
Jun Kobayashi, Masamichi Nakayama, Kenichi Nagase
{"title":"Molecular design of dynamically thermoresponsive biomaterials.","authors":"Jun Kobayashi, Masamichi Nakayama, Kenichi Nagase","doi":"10.1080/14686996.2025.2475736","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamically thermoresponsive biomaterials, particularly those utilizing poly(<i>N</i>-isopropylacrylamide) (PNIPAAm), have attracted much attention in biomedical applications due to their reversible phase transition near body temperature. These biomaterials provide innovations across drug delivery system, chromatography, and tissue engineering. Molecular designs, such as the incorporation of hydrophilic comonomers or graft copolymers in PNIPAAm hydrogels, enhance rapid kinetics of the gels when jumping the temperature across the phase transition temperature, because of avoiding 'skin layer' formation on the surface of the gels. Nanocarriers possessing PNIPAAm coronas facilitate spatial drug delivery and temporally on-demand drug release to targeted cancers in combination with hyperthermic therapy. Downsizing of PNIPAAm hydrogels accelerates the kinetics of shrinkage/swelling, leading to applications as thermoresponsive chromatographic matrices and cell cultureware. PNIPAAm-modified surfaces support thermoresponsive cell culture systems for the non-invasive recovery of intact cell sheets, enabling advanced regenerative therapies and layered 3D tissue formation. Recent developments also integrate growth factor delivery for sustained cell stimulation on culturewares. Newly developed biomaterials, including dynamically thermoresponsive PNIPAAm, are expected to expand the opportunity for novel treatment technologies such as targeted therapies and regenerative medicine.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2475736"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2475736","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamically thermoresponsive biomaterials, particularly those utilizing poly(N-isopropylacrylamide) (PNIPAAm), have attracted much attention in biomedical applications due to their reversible phase transition near body temperature. These biomaterials provide innovations across drug delivery system, chromatography, and tissue engineering. Molecular designs, such as the incorporation of hydrophilic comonomers or graft copolymers in PNIPAAm hydrogels, enhance rapid kinetics of the gels when jumping the temperature across the phase transition temperature, because of avoiding 'skin layer' formation on the surface of the gels. Nanocarriers possessing PNIPAAm coronas facilitate spatial drug delivery and temporally on-demand drug release to targeted cancers in combination with hyperthermic therapy. Downsizing of PNIPAAm hydrogels accelerates the kinetics of shrinkage/swelling, leading to applications as thermoresponsive chromatographic matrices and cell cultureware. PNIPAAm-modified surfaces support thermoresponsive cell culture systems for the non-invasive recovery of intact cell sheets, enabling advanced regenerative therapies and layered 3D tissue formation. Recent developments also integrate growth factor delivery for sustained cell stimulation on culturewares. Newly developed biomaterials, including dynamically thermoresponsive PNIPAAm, are expected to expand the opportunity for novel treatment technologies such as targeted therapies and regenerative medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信