RIG-I-driven CDKN1A stabilization reinforces cellular senescence.

IF 8 2区 生物学 Q1 BIOLOGY
Cui Wang, Xiaoyu Jiang, Hong-Yu Li, Jianli Hu, Qianzhao Ji, Qiaoran Wang, Xiaoqian Liu, Daoyuan Huang, Kaowen Yan, Liyun Zhao, Yanling Fan, Si Wang, Shuai Ma, Juan Carlos Izpisua Belmonte, Jing Qu, Guang-Hui Liu, Weiqi Zhang
{"title":"RIG-I-driven CDKN1A stabilization reinforces cellular senescence.","authors":"Cui Wang, Xiaoyu Jiang, Hong-Yu Li, Jianli Hu, Qianzhao Ji, Qiaoran Wang, Xiaoqian Liu, Daoyuan Huang, Kaowen Yan, Liyun Zhao, Yanling Fan, Si Wang, Shuai Ma, Juan Carlos Izpisua Belmonte, Jing Qu, Guang-Hui Liu, Weiqi Zhang","doi":"10.1007/s11427-024-2844-8","DOIUrl":null,"url":null,"abstract":"<p><p>The innate immune signaling network follows a canonical format for signal transmission. The innate immune pathway is crucial for defense against pathogens, yet its mechanistic crosstalk with aging processes remains largely unexplored. Retinoic acid-inducible gene-I (RIG-I), a key mediator of antiviral immunity within this pathway, has an enigmatic role in stem cell senescence. Our study reveals that RIG-I levels increase in human genetic and physiological cellular aging models, and its accumulation drives cellular senescence. Conversely, CRISPR/Cas9-mediated RIG-I deletion or pharmacological inhibition in human mesenchymal stem cells (hMSCs) confers resistance to senescence. Mechanistically, RIG-I binds to endogenous mRNAs, with CDKN1A mRNA being a prominent target. Specifically, RIG-I stabilizes CDKN1A mRNA, resulting in elevated CDKN1A transcript levels and increased p21<sup>Cip1</sup> protein expression, which precipitates senescence. Collectively, our findings establish RIG-I as a post-transcriptional regulator of senescence and suggest potential targets for the mitigation of aging-related diseases.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2844-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The innate immune signaling network follows a canonical format for signal transmission. The innate immune pathway is crucial for defense against pathogens, yet its mechanistic crosstalk with aging processes remains largely unexplored. Retinoic acid-inducible gene-I (RIG-I), a key mediator of antiviral immunity within this pathway, has an enigmatic role in stem cell senescence. Our study reveals that RIG-I levels increase in human genetic and physiological cellular aging models, and its accumulation drives cellular senescence. Conversely, CRISPR/Cas9-mediated RIG-I deletion or pharmacological inhibition in human mesenchymal stem cells (hMSCs) confers resistance to senescence. Mechanistically, RIG-I binds to endogenous mRNAs, with CDKN1A mRNA being a prominent target. Specifically, RIG-I stabilizes CDKN1A mRNA, resulting in elevated CDKN1A transcript levels and increased p21Cip1 protein expression, which precipitates senescence. Collectively, our findings establish RIG-I as a post-transcriptional regulator of senescence and suggest potential targets for the mitigation of aging-related diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信