Natural resistance to cancers in long-lived mammals: genomic mechanisms and experimental evidence to explain Peto's paradox.

IF 8 2区 生物学 Q1 BIOLOGY
Linxia Sun, Zhikang Xu, Mengqi Shuai, Chengxu Li, Guang Yang, Shixia Xu
{"title":"Natural resistance to cancers in long-lived mammals: genomic mechanisms and experimental evidence to explain Peto's paradox.","authors":"Linxia Sun, Zhikang Xu, Mengqi Shuai, Chengxu Li, Guang Yang, Shixia Xu","doi":"10.1007/s11427-024-2838-x","DOIUrl":null,"url":null,"abstract":"<p><p>Long-lived mammals are reported to have rare or considerably fewer instances of spontaneous tumors, suggesting they might have evolved specific or convergent mechanisms of cancer resistance to extend lifespan; however, the underlying mechanisms remain insufficiently explored. Here, we conducted comparative analysis across 60 mammalian genomes to investigate the genomic features associated with natural cancer resistance. We identified 296 strongly selected genes unique to long-lived species and associated with immune response, DNA repair, and cancer, which might contribute to cancer resistance and lifespan extension in long-lived species. Further, 229 convergent cancer-related genes were detected in the four extremely long-lived species and in-vitro assays confirmed a convergent mutation of LZTS1, shared by bowhead whales and naked mole rats, could suppress cancer development. Importantly, 16 genes were significantly related to both body weight and cancer, defined as candidate genes of Peto's paradox. Of them, the YAP1 gene, harboring the A214S mutation, was identified as a key gene that upregulated tumor suppression genes by localizing to the cytoplasm, which might prohibit cancer development in the large and long-lived cetaceans. These findings provide novel insights into the molecular mechanisms underlying natural cancer resistance in long-lived mammals and the biological basis of Peto's paradox.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2838-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-lived mammals are reported to have rare or considerably fewer instances of spontaneous tumors, suggesting they might have evolved specific or convergent mechanisms of cancer resistance to extend lifespan; however, the underlying mechanisms remain insufficiently explored. Here, we conducted comparative analysis across 60 mammalian genomes to investigate the genomic features associated with natural cancer resistance. We identified 296 strongly selected genes unique to long-lived species and associated with immune response, DNA repair, and cancer, which might contribute to cancer resistance and lifespan extension in long-lived species. Further, 229 convergent cancer-related genes were detected in the four extremely long-lived species and in-vitro assays confirmed a convergent mutation of LZTS1, shared by bowhead whales and naked mole rats, could suppress cancer development. Importantly, 16 genes were significantly related to both body weight and cancer, defined as candidate genes of Peto's paradox. Of them, the YAP1 gene, harboring the A214S mutation, was identified as a key gene that upregulated tumor suppression genes by localizing to the cytoplasm, which might prohibit cancer development in the large and long-lived cetaceans. These findings provide novel insights into the molecular mechanisms underlying natural cancer resistance in long-lived mammals and the biological basis of Peto's paradox.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信