Wenfang Wang, Huiyan He, Hewei Liu, Yuan Gao, Fujun Dang, Xiujuan Zhao, Shaoxin Chen, Lei Li, Yinhua Lu
{"title":"Developing a robust genome editing tool based on an endogenous type I-B CRISPR-Cas system in Saccharopolyspora spinosa.","authors":"Wenfang Wang, Huiyan He, Hewei Liu, Yuan Gao, Fujun Dang, Xiujuan Zhao, Shaoxin Chen, Lei Li, Yinhua Lu","doi":"10.1007/s11427-024-2869-x","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharopolyspora spinosa is an industrial rare actinomycete capable of producing important environmental-friendly biopesticides, spinosyns. However, exploitation of S. spinosa has been limited due to its genetic inaccessibility and lack of effective genome engineering tools. In this work, we characterized the activity of an endogenous type I-B CRISPR-Cas system as well as its recognized protospacer adjacent motifs (PAMs) based on bioinformatics analysis combined with a plasmid interference assay in S. spinosa. By delivering editing plasmids containing a designed miniCRISPR array (repeat+self-targeting spacer+repeat) and repair templates, we achieved 100% editing efficiency for gene deletion. Using this tool, the genetic barrier composed of the restriction-modification (RM) systems was systematically disarmed. We showed that by disarming one type I RM system (encoded by A8926_1903/1904/1905) and two type II RM systems (encoded by A8926_1725/1726 and A8926_2652/2653) simultaneously, the transformation efficiency of the replicative and integrative plasmids (pSP01 and pSI01) was increased by approximately 3.9-fold and 4.2-fold, respectively. Using the engineered strain with simultaneous knock-out of these three RM genes as the starting strain, we achieved the deletion of 75-kb spinosyns biosynthetic gene cluster (BGC) as well as gene insertion at high efficiency. Collectively, we developed a reliable and highly efficient genome editing tool based on the endogenous type I CRISPR-Cas system combined with the disarmament of the RM systems in S. spinosa. This is the first time to establish an endogenous CRISPR-Cas-based genome editing tool in the non-model industrial actinomycetes.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2869-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharopolyspora spinosa is an industrial rare actinomycete capable of producing important environmental-friendly biopesticides, spinosyns. However, exploitation of S. spinosa has been limited due to its genetic inaccessibility and lack of effective genome engineering tools. In this work, we characterized the activity of an endogenous type I-B CRISPR-Cas system as well as its recognized protospacer adjacent motifs (PAMs) based on bioinformatics analysis combined with a plasmid interference assay in S. spinosa. By delivering editing plasmids containing a designed miniCRISPR array (repeat+self-targeting spacer+repeat) and repair templates, we achieved 100% editing efficiency for gene deletion. Using this tool, the genetic barrier composed of the restriction-modification (RM) systems was systematically disarmed. We showed that by disarming one type I RM system (encoded by A8926_1903/1904/1905) and two type II RM systems (encoded by A8926_1725/1726 and A8926_2652/2653) simultaneously, the transformation efficiency of the replicative and integrative plasmids (pSP01 and pSI01) was increased by approximately 3.9-fold and 4.2-fold, respectively. Using the engineered strain with simultaneous knock-out of these three RM genes as the starting strain, we achieved the deletion of 75-kb spinosyns biosynthetic gene cluster (BGC) as well as gene insertion at high efficiency. Collectively, we developed a reliable and highly efficient genome editing tool based on the endogenous type I CRISPR-Cas system combined with the disarmament of the RM systems in S. spinosa. This is the first time to establish an endogenous CRISPR-Cas-based genome editing tool in the non-model industrial actinomycetes.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.