Huanxi Sun, Yiwei Ding, Ziwei Wang, Jie Luo, Nian Wang
{"title":"Identification of a root-specific expression promoter in poplar and its application in genetic engineering for cadmium phytoremediation.","authors":"Huanxi Sun, Yiwei Ding, Ziwei Wang, Jie Luo, Nian Wang","doi":"10.1007/s00299-025-03479-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A promoter, PRSEP7, was identified and confirmed to be specifically expressed in poplar roots. Poplar PRSEP7::CadWp transgenic lines showed high phytoremediation of Cd(II)-contaminated WPM and soil. Cadmium ions (Cd(II)) are heavy metals that are difficult for organisms to decompose in our natural environment. The generation of plants by genetic engineering with a high ability to phytoremediate Cd(II) from the soil is an ideal biological remediation strategy. Here, we identified and confirmed a promoter, PRSEP7, that is specifically expressed in poplar (Populus L.) roots. The promoter of PRSEP7 was then used to construct the poplar root expression vector 2301S-root. The CadW gene encoding a carbonic anhydrase (CA) was reported to play important roles in the phytoremediation of Cd(II) in microorganisms in a previous study. The sequence of CadW was optimized for plants, and the resulting gene CadWp also showed high activity for sequestration of Cd(II). CadWp was then introduced to 2301S-root to generate the PRSEP7::CadWp construct. This construct was used to transform poplar via Agrobacterium-mediated transformation. A number of stable transgenic poplar lines were generated, and two lines were randomly selected to test their ability to phytoremediate Cd(II). With several parameter measurements, the two transgenic lines showed high phytoremediation of Cd(II) under multiple growth conditions. Overall, we generated elite plant materials for the phytoremediation of Cd(II) in this study.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 4","pages":"89"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03479-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: A promoter, PRSEP7, was identified and confirmed to be specifically expressed in poplar roots. Poplar PRSEP7::CadWp transgenic lines showed high phytoremediation of Cd(II)-contaminated WPM and soil. Cadmium ions (Cd(II)) are heavy metals that are difficult for organisms to decompose in our natural environment. The generation of plants by genetic engineering with a high ability to phytoremediate Cd(II) from the soil is an ideal biological remediation strategy. Here, we identified and confirmed a promoter, PRSEP7, that is specifically expressed in poplar (Populus L.) roots. The promoter of PRSEP7 was then used to construct the poplar root expression vector 2301S-root. The CadW gene encoding a carbonic anhydrase (CA) was reported to play important roles in the phytoremediation of Cd(II) in microorganisms in a previous study. The sequence of CadW was optimized for plants, and the resulting gene CadWp also showed high activity for sequestration of Cd(II). CadWp was then introduced to 2301S-root to generate the PRSEP7::CadWp construct. This construct was used to transform poplar via Agrobacterium-mediated transformation. A number of stable transgenic poplar lines were generated, and two lines were randomly selected to test their ability to phytoremediate Cd(II). With several parameter measurements, the two transgenic lines showed high phytoremediation of Cd(II) under multiple growth conditions. Overall, we generated elite plant materials for the phytoremediation of Cd(II) in this study.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.