Lars Bollmann, Peter Baracskay, Federico Stella, Jozsef Csicsvari
{"title":"Sleep stages antagonistically modulate reactivation drift.","authors":"Lars Bollmann, Peter Baracskay, Federico Stella, Jozsef Csicsvari","doi":"10.1016/j.neuron.2025.02.025","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal reactivation of waking neuronal assemblies in sleep is a key initial step of systems consolidation. Nevertheless, it is unclear whether reactivated assemblies are static or whether they reorganize gradually over prolonged sleep. We tracked reactivated CA1 assembly patterns over ∼20 h of sleep/rest periods and related them to assemblies seen before or after in a spatial learning paradigm using rats. We found that reactivated assembly patterns were gradually transformed and started to resemble those seen in the subsequent recall session. Periods of rapid eye movement (REM) sleep and non-REM (NREM) had antagonistic roles: whereas NREM accelerated the assembly drift, REM countered it. Moreover, only a subset of rate-changing pyramidal cells contributed to the drift, whereas stable-firing-rate cells maintained unaltered reactivation patterns. Our data suggest that prolonged sleep promotes the spontaneous reorganization of spatial assemblies, which can contribute to daily cognitive map changes or encoding new learning situations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.02.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hippocampal reactivation of waking neuronal assemblies in sleep is a key initial step of systems consolidation. Nevertheless, it is unclear whether reactivated assemblies are static or whether they reorganize gradually over prolonged sleep. We tracked reactivated CA1 assembly patterns over ∼20 h of sleep/rest periods and related them to assemblies seen before or after in a spatial learning paradigm using rats. We found that reactivated assembly patterns were gradually transformed and started to resemble those seen in the subsequent recall session. Periods of rapid eye movement (REM) sleep and non-REM (NREM) had antagonistic roles: whereas NREM accelerated the assembly drift, REM countered it. Moreover, only a subset of rate-changing pyramidal cells contributed to the drift, whereas stable-firing-rate cells maintained unaltered reactivation patterns. Our data suggest that prolonged sleep promotes the spontaneous reorganization of spatial assemblies, which can contribute to daily cognitive map changes or encoding new learning situations.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.