Robin N Stringer, Xuechen Tang, Bohumila Jurkovicova-Tarabova, Mary Murphy, Klaus R Liedl, Norbert Weiss
{"title":"Functional characterization of a novel de novo CACNA1C pathogenic variant in a patient with neurodevelopmental disorder.","authors":"Robin N Stringer, Xuechen Tang, Bohumila Jurkovicova-Tarabova, Mary Murphy, Klaus R Liedl, Norbert Weiss","doi":"10.1186/s13041-025-01195-w","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in CACNA1C, the gene encoding Ca<sub>v</sub>1.2 voltage-gated calcium channels, are associated with a spectrum of disorders, including Timothy syndrome and other neurodevelopmental and cardiac conditions. In this study, we report a child with a de novo heterozygous missense variant (c.1973T > C; L658P) in CACNA1C, presenting with refractory epilepsy, global developmental delay, hypotonia, and multiple systemic abnormalities, but without overt cardiac dysfunction. Electrophysiological analysis of the recombinant Ca<sub>v</sub>1.2 L658P variant revealed profound gating alterations, most notably a significant hyperpolarizing shift in the voltage dependence of activation and inactivation. Additionally, molecular modeling suggested that the L658P mutation disrupts interactions within the IIS5 transmembrane segment, reducing the energy barrier for state transitions and facilitating channel opening at more negative voltages. These findings establish L658P as a pathogenic CACNA1C variant primarily associated with severe neurological dysfunction and expands the phenotypic spectrum of CACNA1C-related disorders.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"18 1","pages":"26"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-025-01195-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in CACNA1C, the gene encoding Cav1.2 voltage-gated calcium channels, are associated with a spectrum of disorders, including Timothy syndrome and other neurodevelopmental and cardiac conditions. In this study, we report a child with a de novo heterozygous missense variant (c.1973T > C; L658P) in CACNA1C, presenting with refractory epilepsy, global developmental delay, hypotonia, and multiple systemic abnormalities, but without overt cardiac dysfunction. Electrophysiological analysis of the recombinant Cav1.2 L658P variant revealed profound gating alterations, most notably a significant hyperpolarizing shift in the voltage dependence of activation and inactivation. Additionally, molecular modeling suggested that the L658P mutation disrupts interactions within the IIS5 transmembrane segment, reducing the energy barrier for state transitions and facilitating channel opening at more negative voltages. These findings establish L658P as a pathogenic CACNA1C variant primarily associated with severe neurological dysfunction and expands the phenotypic spectrum of CACNA1C-related disorders.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.