Neural Excitatory/Inhibitory Imbalance in Motor Aging: From Genetic Mechanisms to Therapeutic Challenges.

IF 3.6 3区 生物学 Q1 BIOLOGY
Xuhui Chen, Ya Wang, Yongning Zhang, Xucheng Li, Le Zhang, Shangbang Gao, Cuntai Zhang
{"title":"Neural Excitatory/Inhibitory Imbalance in Motor Aging: From Genetic Mechanisms to Therapeutic Challenges.","authors":"Xuhui Chen, Ya Wang, Yongning Zhang, Xucheng Li, Le Zhang, Shangbang Gao, Cuntai Zhang","doi":"10.3390/biology14030272","DOIUrl":null,"url":null,"abstract":"<p><p>Neural excitatory/inhibitory (E/I) imbalance plays a pivotal role in the aging process. However, despite its significant impact, the role of E/I imbalance in motor dysfunction and neurodegenerative diseases has not received sufficient attention. This review explores the mechanisms underlying motor aging through the lens of E/I balance, emphasizing genetic and molecular factors that contribute to this imbalance (such as <i>SCN2A</i>, <i>CACNA1C</i>, <i>GABRB3</i>, <i>GRIN2A</i>, <i>SYT</i>, <i>BDNF</i>…). Key regulatory genes, including <i>REST</i>, <i>vps-34</i>, and <i>STXBP1</i>, are examined for their roles in modulating synaptic activity and neuronal function during aging. With insights drawn from ALS, we discuss how disruptions in E/I balance contribute to the pathophysiology of age-related motor dysfunction. The genes discussed above exhibit a certain association with age-related motor neuron diseases (like ALS), a relationship that had not been previously recognized. Innovative genetic therapies, such as gene editing technology and optogenetic manipulation, are emerging as promising tools for restoring E/I balance, offering hope for ameliorating motor deficits in aging. This review explores the potential of these technologies to intervene in aging-related motor diseases, despite challenges in their direct application to human conditions.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939721/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14030272","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neural excitatory/inhibitory (E/I) imbalance plays a pivotal role in the aging process. However, despite its significant impact, the role of E/I imbalance in motor dysfunction and neurodegenerative diseases has not received sufficient attention. This review explores the mechanisms underlying motor aging through the lens of E/I balance, emphasizing genetic and molecular factors that contribute to this imbalance (such as SCN2A, CACNA1C, GABRB3, GRIN2A, SYT, BDNF…). Key regulatory genes, including REST, vps-34, and STXBP1, are examined for their roles in modulating synaptic activity and neuronal function during aging. With insights drawn from ALS, we discuss how disruptions in E/I balance contribute to the pathophysiology of age-related motor dysfunction. The genes discussed above exhibit a certain association with age-related motor neuron diseases (like ALS), a relationship that had not been previously recognized. Innovative genetic therapies, such as gene editing technology and optogenetic manipulation, are emerging as promising tools for restoring E/I balance, offering hope for ameliorating motor deficits in aging. This review explores the potential of these technologies to intervene in aging-related motor diseases, despite challenges in their direct application to human conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信