{"title":"The Role of Olive Oil in Cardiometabolic Risk.","authors":"Andrea Salvo, Antonino Tuttolomondo","doi":"10.3390/metabo15030190","DOIUrl":null,"url":null,"abstract":"<p><p>Olive oil, the primary fat source in the Mediterranean diet (MedDiet), is rich in monounsaturated fatty acids (MUFA), especially oleic acid, which constitutes 70-80% of its composition. Extra-virgin olive oil (EVOO), produced by mechanically pressing olives, is the highest quality olive oil, with an intense flavor and acidity <1%. In contrast, refined olive oil (ROO), a blend of virgin and refined oils, contains fewer antioxidants and anti-inflammatory compounds. EVOO's health benefits stem largely from its MUFA content, which is linked to reduced risks of cardiovascular disease (CVD), neurodegenerative conditions, and certain cancers. Additionally, EVOO contains minor, but bioactive, components such as polyphenols, tocopherols, and phytosterols, contributing to its oxidative stability, sensory qualities, and health-promoting properties. These include polyphenols, like oleuropein, hydroxytyrosol, and tyrosol, which exhibit anti-inflammatory, cardioprotective, neuroprotective, and anticancer effects. Epidemiological studies suggest an inverse relationship between olive oil intake and CVD, with EVOO-enriched MedDiet interventions showing improved lipid profiles, reduced blood pressure, and lower cardiovascular event risk. The PREDIMED study highlights the significant role of EVOO in reducing cardiometabolic risk. This review explores the impact of EVOO's chemical components within the MedDiet framework on metabolic variables influencing cardiometabolic health.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15030190","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Olive oil, the primary fat source in the Mediterranean diet (MedDiet), is rich in monounsaturated fatty acids (MUFA), especially oleic acid, which constitutes 70-80% of its composition. Extra-virgin olive oil (EVOO), produced by mechanically pressing olives, is the highest quality olive oil, with an intense flavor and acidity <1%. In contrast, refined olive oil (ROO), a blend of virgin and refined oils, contains fewer antioxidants and anti-inflammatory compounds. EVOO's health benefits stem largely from its MUFA content, which is linked to reduced risks of cardiovascular disease (CVD), neurodegenerative conditions, and certain cancers. Additionally, EVOO contains minor, but bioactive, components such as polyphenols, tocopherols, and phytosterols, contributing to its oxidative stability, sensory qualities, and health-promoting properties. These include polyphenols, like oleuropein, hydroxytyrosol, and tyrosol, which exhibit anti-inflammatory, cardioprotective, neuroprotective, and anticancer effects. Epidemiological studies suggest an inverse relationship between olive oil intake and CVD, with EVOO-enriched MedDiet interventions showing improved lipid profiles, reduced blood pressure, and lower cardiovascular event risk. The PREDIMED study highlights the significant role of EVOO in reducing cardiometabolic risk. This review explores the impact of EVOO's chemical components within the MedDiet framework on metabolic variables influencing cardiometabolic health.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.