{"title":"A Comparative Study of Network-Based Machine Learning Approaches for Binary Classification in Metabolomics.","authors":"Hunter Dlugas, Seongho Kim","doi":"10.3390/metabo15030174","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Metabolomics has recently emerged as a key tool in the biological sciences, offering insights into metabolic pathways and processes. Over the last decade, network-based machine learning approaches have gained significant popularity and application across various fields. While several studies have utilized metabolomics profiles for sample classification, many network-based machine learning approaches remain unexplored for metabolomic-based classification tasks. This study aims to compare the performance of various network-based machine learning approaches, including recently developed methods, in metabolomics-based classification. <b>Methods</b>: A standard data preprocessing procedure was applied to 17 metabolomic datasets, and Bayesian neural network (BNN), convolutional neural network (CNN), feedforward neural network (FNN), Kolmogorov-Arnold network (KAN), and spiking neural network (SNN) were evaluated on each dataset. The datasets varied widely in size, mass spectrometry method, and response variable. <b>Results</b>: With respect to AUC on test data, BNN, CNN, FNN, KAN, and SNN were the top-performing models in 4, 1, 5, 3, and 4 of the 17 datasets, respectively. Regarding F1-score, the top-performing models were BNN (3 datasets), CNN (3 datasets), FNN (4 datasets), KAN (4 datasets), and SNN (3 datasets). For accuracy, BNN, CNN, FNN, KAN, and SNN performed best in 4, 1, 4, 4, and 4 datasets, respectively. <b>Conclusions</b>: No network-based modeling approach consistently outperformed others across the metrics of AUC, F1-score, or accuracy. Our results indicate that while no single network-based modeling approach is superior for metabolomics-based classification tasks, BNN, KAN, and SNN may be underappreciated and underutilized relative to the more commonly used CNN and FNN.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15030174","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Metabolomics has recently emerged as a key tool in the biological sciences, offering insights into metabolic pathways and processes. Over the last decade, network-based machine learning approaches have gained significant popularity and application across various fields. While several studies have utilized metabolomics profiles for sample classification, many network-based machine learning approaches remain unexplored for metabolomic-based classification tasks. This study aims to compare the performance of various network-based machine learning approaches, including recently developed methods, in metabolomics-based classification. Methods: A standard data preprocessing procedure was applied to 17 metabolomic datasets, and Bayesian neural network (BNN), convolutional neural network (CNN), feedforward neural network (FNN), Kolmogorov-Arnold network (KAN), and spiking neural network (SNN) were evaluated on each dataset. The datasets varied widely in size, mass spectrometry method, and response variable. Results: With respect to AUC on test data, BNN, CNN, FNN, KAN, and SNN were the top-performing models in 4, 1, 5, 3, and 4 of the 17 datasets, respectively. Regarding F1-score, the top-performing models were BNN (3 datasets), CNN (3 datasets), FNN (4 datasets), KAN (4 datasets), and SNN (3 datasets). For accuracy, BNN, CNN, FNN, KAN, and SNN performed best in 4, 1, 4, 4, and 4 datasets, respectively. Conclusions: No network-based modeling approach consistently outperformed others across the metrics of AUC, F1-score, or accuracy. Our results indicate that while no single network-based modeling approach is superior for metabolomics-based classification tasks, BNN, KAN, and SNN may be underappreciated and underutilized relative to the more commonly used CNN and FNN.
MetabolitesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍:
Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.