Disorders of Iron Metabolism: A "Sharp Edge" of Deoxynivalenol-Induced Hepatotoxicity.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2025-03-01 DOI:10.3390/metabo15030165
Haoyue Guan, Yujing Cui, Zixuan Hua, Youtian Deng, Huidan Deng, Junliang Deng
{"title":"Disorders of Iron Metabolism: A \"Sharp Edge\" of Deoxynivalenol-Induced Hepatotoxicity.","authors":"Haoyue Guan, Yujing Cui, Zixuan Hua, Youtian Deng, Huidan Deng, Junliang Deng","doi":"10.3390/metabo15030165","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by <i>Fusarium graminearum</i>, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen species. Although it has been demonstrated that DON can induce ferroptosis in the liver, the specific mechanisms and pathways are still unknown. The aim of this experiment was to investigate that DON can induce iron metabolism disorders in the livers of mice, thereby triggering ferroptosis and causing toxic damage to the liver.</p><p><strong>Methods: </strong>Male C57 mice were treated with DON at a 5 mg/kg BW concentration as an in vivo model. After sampling, organ coefficient monitoring, liver function test, histopathological analysis, liver Fe<sup>2+</sup> content test, and oxidative stress-related indexes were performed. The mRNA and protein expression of Nrf2 and its downstream genes were also detected using a series of methods including quantitative real-time PCR, immunofluorescence double-labeling, and Western blotting analysis.</p><p><strong>Results: </strong>DON can cause damage to the liver of a mouse. Specifically, we found that mouse livers in the DON group exhibited pathological damage in cell necrosis, inflammatory infiltration, cytoplasmic vacuolization, elevated relative liver weight, and significant changes in liver function indexes. Meanwhile, the substantial reduction in the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the DON group indicated that DON also caused oxidative stress in the liver. Notably, DON exposure increased the levels of Fe<sup>2+</sup> and Malondialdehyde (MDA) in the liver, which provides strong evidence for the occurrence of iron metabolism and ferroptosis disorders. Most importantly, mRNA and protein expression of Nrf2, an important pathway for iron metabolism and ferroptosis, along with its downstream genes, heme oxygenase (HO-1), quinone oxidoreductase (NQO1), glutathione peroxidase (GPX4), and solute carrier gene (SLC7a11), were significantly inhibited in the DON group.</p><p><strong>Conclusions: </strong>Based on our results, the Nrf2 pathway is closely associated with DON-induced iron metabolism disorders and ferroptosis in mouse livers, suggesting that maintaining hepatic iron homeostasis and activating the Nrf2 pathway may be a potential target for mitigating DON hepatotoxicity in the future.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15030165","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objectives: Deoxynivalenol (DON), known as vomitoxin, is one of the most common mycotoxins produced by Fusarium graminearum, with high detection rates in feed worldwide. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation and the accumulation of reactive oxygen species. Although it has been demonstrated that DON can induce ferroptosis in the liver, the specific mechanisms and pathways are still unknown. The aim of this experiment was to investigate that DON can induce iron metabolism disorders in the livers of mice, thereby triggering ferroptosis and causing toxic damage to the liver.

Methods: Male C57 mice were treated with DON at a 5 mg/kg BW concentration as an in vivo model. After sampling, organ coefficient monitoring, liver function test, histopathological analysis, liver Fe2+ content test, and oxidative stress-related indexes were performed. The mRNA and protein expression of Nrf2 and its downstream genes were also detected using a series of methods including quantitative real-time PCR, immunofluorescence double-labeling, and Western blotting analysis.

Results: DON can cause damage to the liver of a mouse. Specifically, we found that mouse livers in the DON group exhibited pathological damage in cell necrosis, inflammatory infiltration, cytoplasmic vacuolization, elevated relative liver weight, and significant changes in liver function indexes. Meanwhile, the substantial reduction in the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the DON group indicated that DON also caused oxidative stress in the liver. Notably, DON exposure increased the levels of Fe2+ and Malondialdehyde (MDA) in the liver, which provides strong evidence for the occurrence of iron metabolism and ferroptosis disorders. Most importantly, mRNA and protein expression of Nrf2, an important pathway for iron metabolism and ferroptosis, along with its downstream genes, heme oxygenase (HO-1), quinone oxidoreductase (NQO1), glutathione peroxidase (GPX4), and solute carrier gene (SLC7a11), were significantly inhibited in the DON group.

Conclusions: Based on our results, the Nrf2 pathway is closely associated with DON-induced iron metabolism disorders and ferroptosis in mouse livers, suggesting that maintaining hepatic iron homeostasis and activating the Nrf2 pathway may be a potential target for mitigating DON hepatotoxicity in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信