{"title":"Experimental and Simulation Study of Proton Exchange Membrane Fuel Cell with 12 µm Thick Membrane over the Temperature Range of 80 °C to 120 °C.","authors":"Yunfei Zhang, Zhengrui Xiao, Xiaoyang Zhao, Jian Wang, Yadong Wang, Jun Yu","doi":"10.3390/membranes15030072","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode assemblies composed of Gore12 during operation at an increasing temperature ranging from 80 to 120 °C, utilizing overpotential decomposition and electrochemical impedance analysis. The experimental results indicate that increasing back pressure can improve the performance of fuel cells, particularly at higher temperatures. The charge transfer resistance initially decreases and then increases with temperature. Furthermore, combined with the simulation results, it is demonstrated that Gore12's thin membrane structure provides excellent self-humidification, which ensures efficient proton conduction at low relative humidity. These findings offer new insights into improving the performance of PEMFCs and enabling stable operation at high temperatures.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15030072","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements have been made in understanding the mechanisms and perspectives of fuel cells operating at elevated temperatures. However, the changes in electrochemical processes within the membrane electrode assembly remain unclear. This study aims to investigate the performance variation laws of membrane electrode assemblies composed of Gore12 during operation at an increasing temperature ranging from 80 to 120 °C, utilizing overpotential decomposition and electrochemical impedance analysis. The experimental results indicate that increasing back pressure can improve the performance of fuel cells, particularly at higher temperatures. The charge transfer resistance initially decreases and then increases with temperature. Furthermore, combined with the simulation results, it is demonstrated that Gore12's thin membrane structure provides excellent self-humidification, which ensures efficient proton conduction at low relative humidity. These findings offer new insights into improving the performance of PEMFCs and enabling stable operation at high temperatures.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.