{"title":"Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development.","authors":"Keren Chen, Zaihui Du, Yangzi Zhang, Ruobin Bai, Longjiao Zhu, Wentao Xu","doi":"10.3390/bios15030142","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing interest in nucleic acids and nanozymes, nucleic acid nanozymes (NANs) have emerged as a promising alternative to traditional enzyme catalysts, combining the advantages of nucleic acids and nanomaterials, and are widely applied in the field of biosensing. This review provides a comprehensive overview of recent studies on NAN-based biosensors. It classifies NANs based on six distinct enzymatic activities: peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, laccase-like, and glucose oxidase-like. This review emphasizes how the catalytic activity of nanozymes is significantly influenced by the properties of nucleic acids and explores the regulatory mechanisms governing the catalytic activity of NANs. Additionally, it systematically reviews important research progress on NANs in colorimetric, fluorescent, electrochemical, SERS, and chemiluminescent sensors, offering insights into the development of the NAN field and biosensor applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15030142","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing interest in nucleic acids and nanozymes, nucleic acid nanozymes (NANs) have emerged as a promising alternative to traditional enzyme catalysts, combining the advantages of nucleic acids and nanomaterials, and are widely applied in the field of biosensing. This review provides a comprehensive overview of recent studies on NAN-based biosensors. It classifies NANs based on six distinct enzymatic activities: peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, laccase-like, and glucose oxidase-like. This review emphasizes how the catalytic activity of nanozymes is significantly influenced by the properties of nucleic acids and explores the regulatory mechanisms governing the catalytic activity of NANs. Additionally, it systematically reviews important research progress on NANs in colorimetric, fluorescent, electrochemical, SERS, and chemiluminescent sensors, offering insights into the development of the NAN field and biosensor applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.