Predicting the Rate Structure of an Evolved Metabolic Network.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Metabolites Pub Date : 2025-03-13 DOI:10.3390/metabo15030200
Friedrich Srienc, John Barrett
{"title":"Predicting the Rate Structure of an Evolved Metabolic Network.","authors":"Friedrich Srienc, John Barrett","doi":"10.3390/metabo15030200","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>: When glucose molecules are metabolized by a biological cell, the molecules are constrained to flow along distinct reaction trajectories, which are defined by the cell's underlying metabolic network. <i>Methods</i>: Using the computational technique of Elementary Mode Analysis, the entire set of all possible trajectories can be enumerated, effectively allowing metabolism to be viewed in a discretized space. <i>Results</i>: With the resulting set of Elementary Flux Modes (EMs), macroscopic fluxes, (of both mass and energy) that cross the cell envelope can be computed by a simple, linear combination of the individual EM trajectories. The challenge in this approach is that the usage probability of each EM is unknown. But, because the analytical framework we have adopted allows metabolism to be viewed in a discrete space, we can use the mathematics of statistical thermodynamics to derive the usage probabilities when the system entropy is maximized. The resulting probabilities, which obey a Boltzmann-type distribution, predict a rate structure for the metabolic network that is in remarkable agreement with experimentally measured rates of adaptively evolved <i>E. coli</i> strains. <i>Conclusions</i>: Thus, in principle, the intracellular dynamic properties of such bacteria can be predicted, using only the knowledge of the DNA sequence, to reconstruct the metabolic reaction network, and the measurement of the specific glucose uptake rate.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15030200","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: When glucose molecules are metabolized by a biological cell, the molecules are constrained to flow along distinct reaction trajectories, which are defined by the cell's underlying metabolic network. Methods: Using the computational technique of Elementary Mode Analysis, the entire set of all possible trajectories can be enumerated, effectively allowing metabolism to be viewed in a discretized space. Results: With the resulting set of Elementary Flux Modes (EMs), macroscopic fluxes, (of both mass and energy) that cross the cell envelope can be computed by a simple, linear combination of the individual EM trajectories. The challenge in this approach is that the usage probability of each EM is unknown. But, because the analytical framework we have adopted allows metabolism to be viewed in a discrete space, we can use the mathematics of statistical thermodynamics to derive the usage probabilities when the system entropy is maximized. The resulting probabilities, which obey a Boltzmann-type distribution, predict a rate structure for the metabolic network that is in remarkable agreement with experimentally measured rates of adaptively evolved E. coli strains. Conclusions: Thus, in principle, the intracellular dynamic properties of such bacteria can be predicted, using only the knowledge of the DNA sequence, to reconstruct the metabolic reaction network, and the measurement of the specific glucose uptake rate.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信