{"title":"Fucoxanthin from <i>Laminaria japonica</i> Targeting PANoptosis and Ferroptosis Pathways: Insights into Its Therapeutic Potential Against Ovarian Cancer.","authors":"Yaze Wang, Yiru Mao, Hui Liu, Yi Huang, Rong Xu","doi":"10.3390/md23030123","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) is a highly aggressive malignancy with a poor prognosis, necessitating novel therapeutic strategies. Fucoxanthin (FX), a marine-derived carotenoid from <i>Laminaria japonica</i>, has demonstrated promising anticancer potential. This study revealed that FX exerts multiple anticancer effects in OC by inhibiting cell proliferation, invasion, and migration, while inducing various forms of programmed cell death (PCD). FX triggered PANoptosis (apoptosis, necroptosis, and pyroptosis) and ferroptosis. FX treatment regulated key markers associated with PANoptosis, including apoptosis (Bcl-2, cleaved caspase-3), pyroptosis (GSDME), and necroptosis (RIPK3). Additionally, FX treatment modulated ferroptosis-related markers, such as SLC7A11 and GPX4, while increasing reactive oxygen species (ROS) and Fe<sup>2+</sup> levels and disrupting mitochondrial function. Proteomic and molecular docking analyses identified AMP-activated protein kinase (AMPK) as a direct FX target, activating the AMPK/Nrf2/HMOX1 pathway to promote ferroptosis. In vivo, FX significantly reduced tumor growth in OC xenograft models, accompanied by enhanced ferroptosis marker expression. These findings demonstrate that FX induces ferroptosis through the AMPK/Nrf2/HMOX1 pathway and promotes PANoptosis via distinct mechanisms, highlighting its potential as a marine-derived therapeutic agent for OC.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23030123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer (OC) is a highly aggressive malignancy with a poor prognosis, necessitating novel therapeutic strategies. Fucoxanthin (FX), a marine-derived carotenoid from Laminaria japonica, has demonstrated promising anticancer potential. This study revealed that FX exerts multiple anticancer effects in OC by inhibiting cell proliferation, invasion, and migration, while inducing various forms of programmed cell death (PCD). FX triggered PANoptosis (apoptosis, necroptosis, and pyroptosis) and ferroptosis. FX treatment regulated key markers associated with PANoptosis, including apoptosis (Bcl-2, cleaved caspase-3), pyroptosis (GSDME), and necroptosis (RIPK3). Additionally, FX treatment modulated ferroptosis-related markers, such as SLC7A11 and GPX4, while increasing reactive oxygen species (ROS) and Fe2+ levels and disrupting mitochondrial function. Proteomic and molecular docking analyses identified AMP-activated protein kinase (AMPK) as a direct FX target, activating the AMPK/Nrf2/HMOX1 pathway to promote ferroptosis. In vivo, FX significantly reduced tumor growth in OC xenograft models, accompanied by enhanced ferroptosis marker expression. These findings demonstrate that FX induces ferroptosis through the AMPK/Nrf2/HMOX1 pathway and promotes PANoptosis via distinct mechanisms, highlighting its potential as a marine-derived therapeutic agent for OC.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.