{"title":"Scaling COVID-19 rates with population size in the United States.","authors":"Austin R Cruz, Brian J Enquist, Joseph R Burger","doi":"10.1098/rsif.2024.0839","DOIUrl":null,"url":null,"abstract":"<p><p>Using county-level data from the United States, we assessed allometric scaling relationships of coronavirus disease (COVID-19) cases, deaths and age structure within and across the first four major waves of the pandemic (wild-type, alpha, delta, omicron). Results generally indicate that the burden of cases disproportionately impacted larger-sized counties, while the burden of deaths disproportionately impacted smaller counties. This may be partially due to multiple interacting social mechanisms, including a higher proportion of older adults who live in smaller counties. Moreover, these likely social mechanisms interacting with vaccinations and virus waves created a dynamic pattern whereby the rate and magnitude of infections and deaths were population- and time-dependent. Our results offer a novel perspective on the scaling dynamics of infectious diseases, highlighting how both the rate and magnitude of COVID-19 cases and deaths scale differently across counties. Population size and age structure are key factors in predicting disease burden. Our findings have practical implications, suggesting that scaling-informed public health policies could more effectively allocate resources and interventions to mitigate the impact of future epidemics across heterogeneous populations.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 224","pages":"20240839"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0839","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Using county-level data from the United States, we assessed allometric scaling relationships of coronavirus disease (COVID-19) cases, deaths and age structure within and across the first four major waves of the pandemic (wild-type, alpha, delta, omicron). Results generally indicate that the burden of cases disproportionately impacted larger-sized counties, while the burden of deaths disproportionately impacted smaller counties. This may be partially due to multiple interacting social mechanisms, including a higher proportion of older adults who live in smaller counties. Moreover, these likely social mechanisms interacting with vaccinations and virus waves created a dynamic pattern whereby the rate and magnitude of infections and deaths were population- and time-dependent. Our results offer a novel perspective on the scaling dynamics of infectious diseases, highlighting how both the rate and magnitude of COVID-19 cases and deaths scale differently across counties. Population size and age structure are key factors in predicting disease burden. Our findings have practical implications, suggesting that scaling-informed public health policies could more effectively allocate resources and interventions to mitigate the impact of future epidemics across heterogeneous populations.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.