{"title":"Flipons enable genomes to learn by intermediating the exchange of energy for information.","authors":"Alan Herbert","doi":"10.1098/rsif.2025.0049","DOIUrl":null,"url":null,"abstract":"<p><p>Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 224","pages":"20250049"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0049","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.