Exploring the Preventive Potential of Solubilized Sturgeon Oil on Acute Infection with Respiratory Viruses.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2025-03-05 DOI:10.3390/md23030112
Seong Ok Park, Erdenebileg Uyangaa, Yong-Kwang Lee, Suk-Hyun Yun, Minyeong Yu, Hyo Jin Kim, Hye Won Cho, Hee Won Byeon, Chong-Kil Lee, Seong Kug Eo
{"title":"Exploring the Preventive Potential of Solubilized Sturgeon Oil on Acute Infection with Respiratory Viruses.","authors":"Seong Ok Park, Erdenebileg Uyangaa, Yong-Kwang Lee, Suk-Hyun Yun, Minyeong Yu, Hyo Jin Kim, Hye Won Cho, Hee Won Byeon, Chong-Kil Lee, Seong Kug Eo","doi":"10.3390/md23030112","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory viral infections (ARIs) represent a significant global health challenge, contributing heavily to worldwide morbidity and mortality rates. Recent efforts to combat ARIs have focused on developing nasal spray formulations that effectively target the nasal mucosa. However, challenges such as irritation, discomfort, and safety concerns highlight the need for natural, eco-friendly ingredients. In this study, we evaluated the efficacy of solubilized sturgeon oil (SSO), prepared as an oil-in-water nanoemulsion from Siberian sturgeon, as an eco-friendly preventive nasal spray agent against ARIs. Intranasal pre-treatment with SSO effectively inhibited respiratory infections caused by SARS-CoV-2, influenza A virus (IAV), and respiratory syncytial virus (RSV). Additionally, it suppressed viral replication in both nasal and lung tissues. This antiviral effect was linked to reduced pulmonary inflammation, characterized by decreased infiltration of Ly-6C<sup>+</sup> monocytes and Ly-6G<sup>+</sup> neutrophils, along with lower pro-inflammatory cytokine levels. Histopathological analyses confirmed that nasal SSO administration significantly mitigated lung inflammation progression caused by viral infections. Notably, the protective effects of SSO against SARS-CoV-2, IAV, and RSV persisted for at least six hours following nasal application. These findings highlight SSO as a promising eco-friendly and safe candidate for nasal spray formulations, providing a potential frontline defense against ARIs.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"23 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md23030112","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute respiratory viral infections (ARIs) represent a significant global health challenge, contributing heavily to worldwide morbidity and mortality rates. Recent efforts to combat ARIs have focused on developing nasal spray formulations that effectively target the nasal mucosa. However, challenges such as irritation, discomfort, and safety concerns highlight the need for natural, eco-friendly ingredients. In this study, we evaluated the efficacy of solubilized sturgeon oil (SSO), prepared as an oil-in-water nanoemulsion from Siberian sturgeon, as an eco-friendly preventive nasal spray agent against ARIs. Intranasal pre-treatment with SSO effectively inhibited respiratory infections caused by SARS-CoV-2, influenza A virus (IAV), and respiratory syncytial virus (RSV). Additionally, it suppressed viral replication in both nasal and lung tissues. This antiviral effect was linked to reduced pulmonary inflammation, characterized by decreased infiltration of Ly-6C+ monocytes and Ly-6G+ neutrophils, along with lower pro-inflammatory cytokine levels. Histopathological analyses confirmed that nasal SSO administration significantly mitigated lung inflammation progression caused by viral infections. Notably, the protective effects of SSO against SARS-CoV-2, IAV, and RSV persisted for at least six hours following nasal application. These findings highlight SSO as a promising eco-friendly and safe candidate for nasal spray formulations, providing a potential frontline defense against ARIs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信