Peptide hydrogel platform encapsulating manganese ions and high-density lipoprotein nanoparticle-mimicking nanovaccines for the prevention and treatment of gastric cancer.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Xu Huang, Lin Hong, Yufan Lv, Kejun Li, Zengxing Zhang, Junjian Deng, Lei Shen
{"title":"Peptide hydrogel platform encapsulating manganese ions and high-density lipoprotein nanoparticle-mimicking nanovaccines for the prevention and treatment of gastric cancer.","authors":"Xu Huang, Lin Hong, Yufan Lv, Kejun Li, Zengxing Zhang, Junjian Deng, Lei Shen","doi":"10.1186/s12967-025-06088-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advanced gastric cancer remains a significant global health challenge, with limited therapeutic options available. In contrast, immunotherapy have emerged as promising alternatives, offering greater potency in treating advanced gastric cancer. However, the development of novel and efficient immunotherapeutic strategy is crucial to enhance the body's immune response against gastric cancer.</p><p><strong>Methods: </strong>This study developed a single-injection peptide hydrogel-based nanovaccine therapy for gastric cancer treatment. The therapy utilizes a RADA<sub>32</sub> peptide hydrogel, which is sensitive to metal ion concentration, to encapsulate manganese ions and HPPS nanovaccines. The HPPS nanovaccines contain antigen peptide and CpG-ODN, designed to activate both the toll-like receptor 9 (TLR9) and cGAS-STING signaling pathways in antigen-presenting cells. This design aims to facilitate a stable and sustained release of the nanovaccine, thereby enhancing the body's effective recognition and response to antigens.</p><p><strong>Results: </strong>The efficacy of the system was confirmed using the model antigen OVA and the gastric cancer-specific antigen MG7-related peptide. The results demonstrated that the nanovaccine effectively activated the immune response, leading to enhanced recognition and response to the antigens. This activation of both TLR9 and cGAS-STING pathways in antigen-presenting cells was crucial for the observed immune response, highlighting the potential of this approach to stimulate a robust and sustained immune response against gastric cancer.</p><p><strong>Conclusions: </strong>This study presents a novel strategy for clinical anti-tumor vaccine administration, offering a promising approach for the prevention and treatment of gastric cancer. The single-injection peptide hydrogel-based nanovaccine system provides a convenient and effective method to enhance the body's immune response against gastric cancer. This approach could potentially be expanded to other types of cancer, providing a versatile platform for cancer immunotherapy.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"371"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06088-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Advanced gastric cancer remains a significant global health challenge, with limited therapeutic options available. In contrast, immunotherapy have emerged as promising alternatives, offering greater potency in treating advanced gastric cancer. However, the development of novel and efficient immunotherapeutic strategy is crucial to enhance the body's immune response against gastric cancer.

Methods: This study developed a single-injection peptide hydrogel-based nanovaccine therapy for gastric cancer treatment. The therapy utilizes a RADA32 peptide hydrogel, which is sensitive to metal ion concentration, to encapsulate manganese ions and HPPS nanovaccines. The HPPS nanovaccines contain antigen peptide and CpG-ODN, designed to activate both the toll-like receptor 9 (TLR9) and cGAS-STING signaling pathways in antigen-presenting cells. This design aims to facilitate a stable and sustained release of the nanovaccine, thereby enhancing the body's effective recognition and response to antigens.

Results: The efficacy of the system was confirmed using the model antigen OVA and the gastric cancer-specific antigen MG7-related peptide. The results demonstrated that the nanovaccine effectively activated the immune response, leading to enhanced recognition and response to the antigens. This activation of both TLR9 and cGAS-STING pathways in antigen-presenting cells was crucial for the observed immune response, highlighting the potential of this approach to stimulate a robust and sustained immune response against gastric cancer.

Conclusions: This study presents a novel strategy for clinical anti-tumor vaccine administration, offering a promising approach for the prevention and treatment of gastric cancer. The single-injection peptide hydrogel-based nanovaccine system provides a convenient and effective method to enhance the body's immune response against gastric cancer. This approach could potentially be expanded to other types of cancer, providing a versatile platform for cancer immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信