Patho-Ecological Distribution and Genetic Diversity of Fusarium oxysporum f. sp. cubense in Malbhog Banana Belts of Assam, India.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Anisha Baruah, Popy Bora, Thukkaram Damodaran, Bishal Saikia, Muthukumar Manoharan, Prakash Patil, Ashok Bhattacharyya, Ankita Saikia, Alok Kumar, Sangeeta Kumari, Juri Talukdar, Utpal Dey, Shenaz Sultana Ahmed, Naseema Rahman, Bharat Chandra Nath, Ruthy Tabing, Sandeep Kumar
{"title":"Patho-Ecological Distribution and Genetic Diversity of <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> in Malbhog Banana Belts of Assam, India.","authors":"Anisha Baruah, Popy Bora, Thukkaram Damodaran, Bishal Saikia, Muthukumar Manoharan, Prakash Patil, Ashok Bhattacharyya, Ankita Saikia, Alok Kumar, Sangeeta Kumari, Juri Talukdar, Utpal Dey, Shenaz Sultana Ahmed, Naseema Rahman, Bharat Chandra Nath, Ruthy Tabing, Sandeep Kumar","doi":"10.3390/jof11030195","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium wilt, caused by <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> (Foc), is recognized as one of the most devastating diseases affecting banana cultivation worldwide. In India, Foc extensively affects Malbhog banana (AAB genomic group) production. In this study, we isolated 25 Foc isolates from wilt-affected Malbhog plantations inIndia. A pathogenicity test confirmed the identity of these isolates as Foc, the primary causative agent of wilt in bananas. The morpho-cultural characterization of Foc isolates showed large variations in colony morphological features, intensity, and pattern of pigmentation, chlamydospores, and conidial size. The molecular identification of these isolates using Race1- and Race4-specific primers established their identity as Race1 of Foc, with the absence of Tropical Race 4 of Foc. For a more comprehensive understanding of the genetic diversity of Foc isolates, we employed ISSR molecular typing, which revealed five major clusters. About 96% of the diversity within the Foc population indicated the presence of polymorphic loci in individuals of a given population evident from the results of Nei's genetic diversity, Shannon's information index, and the polymorphism information content values, apart from the analysis of molecular variance (AMOVA). The current findings provide significant insights toward the detection of Foc variants and, consequently, the deployment of effective management practices to keep the possible epidemic development of disease under control along the Malbhog banana growing belts of northeast India.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11030195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is recognized as one of the most devastating diseases affecting banana cultivation worldwide. In India, Foc extensively affects Malbhog banana (AAB genomic group) production. In this study, we isolated 25 Foc isolates from wilt-affected Malbhog plantations inIndia. A pathogenicity test confirmed the identity of these isolates as Foc, the primary causative agent of wilt in bananas. The morpho-cultural characterization of Foc isolates showed large variations in colony morphological features, intensity, and pattern of pigmentation, chlamydospores, and conidial size. The molecular identification of these isolates using Race1- and Race4-specific primers established their identity as Race1 of Foc, with the absence of Tropical Race 4 of Foc. For a more comprehensive understanding of the genetic diversity of Foc isolates, we employed ISSR molecular typing, which revealed five major clusters. About 96% of the diversity within the Foc population indicated the presence of polymorphic loci in individuals of a given population evident from the results of Nei's genetic diversity, Shannon's information index, and the polymorphism information content values, apart from the analysis of molecular variance (AMOVA). The current findings provide significant insights toward the detection of Foc variants and, consequently, the deployment of effective management practices to keep the possible epidemic development of disease under control along the Malbhog banana growing belts of northeast India.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信