Assessment of Recombinant β-Propeller Phytase of the Bacillus Species Expressed Intracellularly in Yarrowia lipolityca.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Liliya G Maloshenok, Yulia S Panina, Sergey A Bruskin, Victoria V Zherdeva, Natalya N Gessler, Alena V Rozumiy, Egor V Antonov, Yulia I Deryabina, Elena P Isakova
{"title":"Assessment of Recombinant β-Propeller Phytase of the <i>Bacillus</i> Species Expressed Intracellularly in <i>Yarrowia lipolityca</i>.","authors":"Liliya G Maloshenok, Yulia S Panina, Sergey A Bruskin, Victoria V Zherdeva, Natalya N Gessler, Alena V Rozumiy, Egor V Antonov, Yulia I Deryabina, Elena P Isakova","doi":"10.3390/jof11030186","DOIUrl":null,"url":null,"abstract":"<p><p>Phytases of the PhyD class according to their pH optimum (7.0-7.8) and high thermal stability can claim to be used in the production of feed supplements. However, today they have no practical application in feed production because there are no suitable producers sufficient for its biotechnological production compared to the PhyA and PhyC class ones. Moreover, in most cases, the technologies with the enzymes produced in secretory form are preferable for the production of phytases, though upon microencapsulation in yeast-producing cells, the phytase thermal stability increases significantly compared to the extracellular form, which improves its compatibility with spray drying technology. In this study, we assayed the intracellular heterologous expression of PhyD phytase from <i>Bacillus</i> species in the <i>Yarrowia lipolytica</i> yeast cells. While the technology has been successfully used to synthesize PhyC phytase from <i>Obesumbacterium proteus</i>, PhyD phytase tends to aggregate upon intracellular accumulation. Furthermore, we evaluated the prospects for the production of encapsulated phytase of the PhyD class of high enzymatic activity when it accumulates in the cell cytoplasm of the <i>Y. lipolytica</i> extremophile yeast, a highly effective platform for the production of recombinant proteins.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"11 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943157/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof11030186","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phytases of the PhyD class according to their pH optimum (7.0-7.8) and high thermal stability can claim to be used in the production of feed supplements. However, today they have no practical application in feed production because there are no suitable producers sufficient for its biotechnological production compared to the PhyA and PhyC class ones. Moreover, in most cases, the technologies with the enzymes produced in secretory form are preferable for the production of phytases, though upon microencapsulation in yeast-producing cells, the phytase thermal stability increases significantly compared to the extracellular form, which improves its compatibility with spray drying technology. In this study, we assayed the intracellular heterologous expression of PhyD phytase from Bacillus species in the Yarrowia lipolytica yeast cells. While the technology has been successfully used to synthesize PhyC phytase from Obesumbacterium proteus, PhyD phytase tends to aggregate upon intracellular accumulation. Furthermore, we evaluated the prospects for the production of encapsulated phytase of the PhyD class of high enzymatic activity when it accumulates in the cell cytoplasm of the Y. lipolytica extremophile yeast, a highly effective platform for the production of recombinant proteins.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信