Comparative Evaluation of Deep Learning Models for Diagnosis of Helminth Infections.

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Omid Mirzaei, Ahmet Ilhan, Emrah Guler, Kaya Suer, Boran Sekeroglu
{"title":"Comparative Evaluation of Deep Learning Models for Diagnosis of Helminth Infections.","authors":"Omid Mirzaei, Ahmet Ilhan, Emrah Guler, Kaya Suer, Boran Sekeroglu","doi":"10.3390/jpm15030121","DOIUrl":null,"url":null,"abstract":"<p><p>(1) <b>Background</b>: Helminth infections are a widespread global health concern, with Ascaris and taeniasis representing two of the most prevalent infestations. Traditional diagnostic methods, such as egg-based microscopy, are fraught with challenges, including subjectivity and low throughput, often leading to misdiagnosis. This study evaluates the efficacy of advanced deep learning models in accurately classifying <i>Ascaris lumbricoides</i> and <i>Taenia saginata</i> eggs from microscopic images, proposing a technologically enhanced approach for diagnostics in clinical settings. (2) <b>Methods</b>: Three state-of-the-art deep learning models, ConvNeXt Tiny, EfficientNet V2 S, and MobileNet V3 S, are considered. A diverse dataset comprising images of Ascaris, Taenia, and uninfected eggs was utilized for training and validating these models by performing multiclass experiments. (3) <b>Results</b>: All models demonstrated high classificatory accuracy, with ConvNeXt Tiny achieving an F1-score of 98.6%, followed by EfficientNet V2 S at 97.5% and MobileNet V3 S at 98.2% in the experiments. These results prove the potential of deep learning in streamlining and improving the diagnostic process for helminthic infections. The application of deep learning models such as ConvNeXt Tiny, EfficientNet V2 S, and MobileNet V3 S shows promise for efficient and accurate helminth egg classification, potentially significantly enhancing the diagnostic workflow. (4) <b>Conclusion</b>: The study demonstrates the feasibility of leveraging advanced computational techniques in parasitology and points towards a future where rapid, objective, and reliable diagnostics are standard.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":"15 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm15030121","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: Helminth infections are a widespread global health concern, with Ascaris and taeniasis representing two of the most prevalent infestations. Traditional diagnostic methods, such as egg-based microscopy, are fraught with challenges, including subjectivity and low throughput, often leading to misdiagnosis. This study evaluates the efficacy of advanced deep learning models in accurately classifying Ascaris lumbricoides and Taenia saginata eggs from microscopic images, proposing a technologically enhanced approach for diagnostics in clinical settings. (2) Methods: Three state-of-the-art deep learning models, ConvNeXt Tiny, EfficientNet V2 S, and MobileNet V3 S, are considered. A diverse dataset comprising images of Ascaris, Taenia, and uninfected eggs was utilized for training and validating these models by performing multiclass experiments. (3) Results: All models demonstrated high classificatory accuracy, with ConvNeXt Tiny achieving an F1-score of 98.6%, followed by EfficientNet V2 S at 97.5% and MobileNet V3 S at 98.2% in the experiments. These results prove the potential of deep learning in streamlining and improving the diagnostic process for helminthic infections. The application of deep learning models such as ConvNeXt Tiny, EfficientNet V2 S, and MobileNet V3 S shows promise for efficient and accurate helminth egg classification, potentially significantly enhancing the diagnostic workflow. (4) Conclusion: The study demonstrates the feasibility of leveraging advanced computational techniques in parasitology and points towards a future where rapid, objective, and reliable diagnostics are standard.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信