Personalized Joint Replacement: Landmark-Free Morphometric Analysis of Distal Radii.

IF 2.6 Q1 SPORT SCIENCES
Sarah L Remus, Kevin Brugetti, Veronika A Zimmer, Nina Hesse, Paul L Reidler, Riccardo Giunta, Julia A Schnabel, Wolfram Demmer
{"title":"Personalized Joint Replacement: Landmark-Free Morphometric Analysis of Distal Radii.","authors":"Sarah L Remus, Kevin Brugetti, Veronika A Zimmer, Nina Hesse, Paul L Reidler, Riccardo Giunta, Julia A Schnabel, Wolfram Demmer","doi":"10.3390/jfmk10010071","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Fractures of the distal radius are common, particularly among young men and elderly women, often leading to painful wrist arthritis, especially if the joint surface has been affected. Traditional treatments of the wrist, such as full or partial wrist fusion, limit movement, and common wrist prostheses have high complication rates. Regenerative medicine and 3D bioprinting offer the potential for personalized joint replacements. <b>Methods</b>: This study evaluates using the contralateral radius as a template for creating customized distal radius prostheses. Bilateral CT scans of healthy wrists were analyzed to assess the shape and symmetry of the distal radius using a landmark-free morphometric method. Instead of comparing defined landmarks, the entire surface of the radius is analyzed employing dense point- and deformation-based morphometry to detect subtle morphological differences, providing an unbiased and more accurate comparison of the overall deformations in the distal radii. <b>Results:</b> results show strong intraindividual symmetry in joint surfaces. Interindividual comparisons revealed significant morphological variations, particularly gender-specific differences. <b>Conclusions:</b> These findings support the use of the contralateral radius as a template for the replaced side. At the same time, the interindividual results endorse the approach of pursuing personalized prostheses as the optimal replacement for distal joint surfaces. The increasing improvement of 3D-printed prostheses promises new methods for better outcomes in distal radius arthrosis after intraarticular fractures. Further research into clinical applications and biocompatible 3D printing materials is recommended.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk10010071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fractures of the distal radius are common, particularly among young men and elderly women, often leading to painful wrist arthritis, especially if the joint surface has been affected. Traditional treatments of the wrist, such as full or partial wrist fusion, limit movement, and common wrist prostheses have high complication rates. Regenerative medicine and 3D bioprinting offer the potential for personalized joint replacements. Methods: This study evaluates using the contralateral radius as a template for creating customized distal radius prostheses. Bilateral CT scans of healthy wrists were analyzed to assess the shape and symmetry of the distal radius using a landmark-free morphometric method. Instead of comparing defined landmarks, the entire surface of the radius is analyzed employing dense point- and deformation-based morphometry to detect subtle morphological differences, providing an unbiased and more accurate comparison of the overall deformations in the distal radii. Results: results show strong intraindividual symmetry in joint surfaces. Interindividual comparisons revealed significant morphological variations, particularly gender-specific differences. Conclusions: These findings support the use of the contralateral radius as a template for the replaced side. At the same time, the interindividual results endorse the approach of pursuing personalized prostheses as the optimal replacement for distal joint surfaces. The increasing improvement of 3D-printed prostheses promises new methods for better outcomes in distal radius arthrosis after intraarticular fractures. Further research into clinical applications and biocompatible 3D printing materials is recommended.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Morphology and Kinesiology
Journal of Functional Morphology and Kinesiology Health Professions-Physical Therapy, Sports Therapy and Rehabilitation
CiteScore
4.20
自引率
0.00%
发文量
94
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信