Christos Kokkotis, Kyriakos Apostolidis, Dimitrios Menychtas, Ioannis Kansizoglou, Evangeli Karampina, Maria Karageorgopoulou, Athanasios Gkrekidis, Serafeim Moustakidis, Evangelos Karakasis, Erasmia Giannakou, Maria Michalopoulou, Georgios Ch Sirakoulis, Nikolaos Aggelousis
{"title":"Explainable Siamese Neural Networks for Detection of High Fall Risk Older Adults in the Community Based on Gait Analysis.","authors":"Christos Kokkotis, Kyriakos Apostolidis, Dimitrios Menychtas, Ioannis Kansizoglou, Evangeli Karampina, Maria Karageorgopoulou, Athanasios Gkrekidis, Serafeim Moustakidis, Evangelos Karakasis, Erasmia Giannakou, Maria Michalopoulou, Georgios Ch Sirakoulis, Nikolaos Aggelousis","doi":"10.3390/jfmk10010073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Falls among the older adult population represent a significant public health concern, often leading to diminished quality of life and serious injuries that escalate healthcare costs, and they may even prove fatal. Accurate fall risk prediction is therefore crucial for implementing timely preventive measures. However, to date, there is no definitive metric to identify individuals with high risk of experiencing a fall. To address this, the present study proposes a novel approach that transforms biomechanical time-series data, derived from gait analysis, into visual representations to facilitate the application of deep learning (DL) methods for fall risk assessment.</p><p><strong>Methods: </strong>By leveraging convolutional neural networks (CNNs) and Siamese neural networks (SNNs), the proposed framework effectively addresses the challenges of limited datasets and delivers robust predictive capabilities.</p><p><strong>Results: </strong>Through the extraction of distinctive gait-related features and the generation of class-discriminative activation maps using Grad-CAM, the random forest (RF) machine learning (ML) model not only achieves commendable accuracy (83.29%) but also enhances explainability.</p><p><strong>Conclusions: </strong>Ultimately, this study underscores the potential of advanced computational tools and machine learning algorithms to improve fall risk prediction, reduce healthcare burdens, and promote greater independence and well-being among the older adults.</p>","PeriodicalId":16052,"journal":{"name":"Journal of Functional Morphology and Kinesiology","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Morphology and Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jfmk10010073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Falls among the older adult population represent a significant public health concern, often leading to diminished quality of life and serious injuries that escalate healthcare costs, and they may even prove fatal. Accurate fall risk prediction is therefore crucial for implementing timely preventive measures. However, to date, there is no definitive metric to identify individuals with high risk of experiencing a fall. To address this, the present study proposes a novel approach that transforms biomechanical time-series data, derived from gait analysis, into visual representations to facilitate the application of deep learning (DL) methods for fall risk assessment.
Methods: By leveraging convolutional neural networks (CNNs) and Siamese neural networks (SNNs), the proposed framework effectively addresses the challenges of limited datasets and delivers robust predictive capabilities.
Results: Through the extraction of distinctive gait-related features and the generation of class-discriminative activation maps using Grad-CAM, the random forest (RF) machine learning (ML) model not only achieves commendable accuracy (83.29%) but also enhances explainability.
Conclusions: Ultimately, this study underscores the potential of advanced computational tools and machine learning algorithms to improve fall risk prediction, reduce healthcare burdens, and promote greater independence and well-being among the older adults.