{"title":"Triplet pair dynamics of singlet fission in orthorhombic polycrystalline powder of rubrene as revealed by magnetoluminescence.","authors":"Yusuke Wakikawa, Tadaaki Ikoma","doi":"10.1063/5.0251084","DOIUrl":null,"url":null,"abstract":"<p><p>Singlet fission, which may increase the energy conversion efficiency of solar cells, proceeds via multiple spin levels of a triplet pair. To clarify the spin-related elementary processes of the triplet pair, we measured the magnetoluminescence effect of the fluorescence of rubrene, in the form of orthorhombic polycrystalline powder, in the range of ±300 mT at room temperature. Model simulations using the density matrix method were performed to elucidate how the features of the magnetoluminescence effect depend on the triplet pair dynamics. Simulations of the observed field dependence of the magnetoluminescence effect revealed an anisotropy of 1:100 for the two-dimensional hopping of triplet excitons forming a triplet pair in the ab plane, for which the exchange interaction depends on the separation distance between the two triplet excitons. The effective lifetime of the spin-correlated triplet pair responsible for the magnetoluminescence effect is estimated to be 2.2 ns.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0251084","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Singlet fission, which may increase the energy conversion efficiency of solar cells, proceeds via multiple spin levels of a triplet pair. To clarify the spin-related elementary processes of the triplet pair, we measured the magnetoluminescence effect of the fluorescence of rubrene, in the form of orthorhombic polycrystalline powder, in the range of ±300 mT at room temperature. Model simulations using the density matrix method were performed to elucidate how the features of the magnetoluminescence effect depend on the triplet pair dynamics. Simulations of the observed field dependence of the magnetoluminescence effect revealed an anisotropy of 1:100 for the two-dimensional hopping of triplet excitons forming a triplet pair in the ab plane, for which the exchange interaction depends on the separation distance between the two triplet excitons. The effective lifetime of the spin-correlated triplet pair responsible for the magnetoluminescence effect is estimated to be 2.2 ns.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.