Daniel Timmer, Daniel C Lünemann, Antonietta De Sio, Giulio Cerullo, Christoph Lienau
{"title":"Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump-probe geometry.","authors":"Daniel Timmer, Daniel C Lünemann, Antonietta De Sio, Giulio Cerullo, Christoph Lienau","doi":"10.1063/5.0256813","DOIUrl":null,"url":null,"abstract":"<p><p>Since its introduction almost three decades ago, two-dimensional electronic spectroscopy (2DES) has evolved into a mature and powerful technique to reveal the inner workings of quantum systems with high temporal and spectral resolution. In general, this technique can isolate different contributions to the nonlinear response and provides access to different dynamical quantum pathways of the system evolution. Such isolation of pathways can be achieved in different experimental geometries. In its original, fully noncollinear implementation, directional phase matching allows for such signal isolation, while in the modern commonly employed pump-probe geometry, experimentally challenging phase-cycling schemes are employed. Here, we show how rephasing, non-rephasing, and zero- and double-quantum 2DES signals can be isolated in the pump-probe geometry without a need for phase-cycling. For this, we utilize established causality restrictions of the nonlinear response, allowing us to separate the different contributions in the spectral domain. We demonstrate this using data recorded for a molecular J-aggregate, acting as an effective three-level system. This approach bridges the gap between the capabilities of shaper-based and fully noncollinear 2DES and experimentally simpler implementations, such as those based on birefringent common-path interferometers.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0256813","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since its introduction almost three decades ago, two-dimensional electronic spectroscopy (2DES) has evolved into a mature and powerful technique to reveal the inner workings of quantum systems with high temporal and spectral resolution. In general, this technique can isolate different contributions to the nonlinear response and provides access to different dynamical quantum pathways of the system evolution. Such isolation of pathways can be achieved in different experimental geometries. In its original, fully noncollinear implementation, directional phase matching allows for such signal isolation, while in the modern commonly employed pump-probe geometry, experimentally challenging phase-cycling schemes are employed. Here, we show how rephasing, non-rephasing, and zero- and double-quantum 2DES signals can be isolated in the pump-probe geometry without a need for phase-cycling. For this, we utilize established causality restrictions of the nonlinear response, allowing us to separate the different contributions in the spectral domain. We demonstrate this using data recorded for a molecular J-aggregate, acting as an effective three-level system. This approach bridges the gap between the capabilities of shaper-based and fully noncollinear 2DES and experimentally simpler implementations, such as those based on birefringent common-path interferometers.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.