Dimerization of model polymer chains under nonequilibrium conditions.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Sangita Mondal, Ved Mahajan, Biman Bagchi
{"title":"Dimerization of model polymer chains under nonequilibrium conditions.","authors":"Sangita Mondal, Ved Mahajan, Biman Bagchi","doi":"10.1063/5.0249314","DOIUrl":null,"url":null,"abstract":"<p><p>Dimerization and subsequent aggregation of polymers and biopolymers often occur under nonequilibrium conditions. When the initial state of the polymer is not collapsed, or the final folded native state, the dynamics of dimerization can follow a course sensitive to both the initial conditions and the conformational dynamics. Here, we study the dimerization process by using computer simulations and analytical theory, where the two monomeric polymer chains are in the elongated state and are initially placed at a separation distance, d0. Subsequent dynamics lead to the concurrent processes of collapse, dimerization, and/or escape. We employ Langevin dynamics simulations with a coarse-grained model of the polymer to capture certain aspects of the dimerization process. At separations d0 much shorter than the length of the monomeric polymer, the dimerization could happen fast and irreversibly from the partly extended polymer state itself. At an initial separation larger than a critical distance, dc, the polymer collapse precedes dimerization, and a significant number of single polymers do not dimerize within the time scale of simulations. To quantify these competitions, we introduce several time-dependent order parameters, namely, (i) the time-dependent radius of gyration RG(t) of individual polymers describing the conformational state of the polymer, (ii) a center-to-center of mass distance parameter RMM, and (iii) a time dependent overlap function Q(t) between the two monomeric polymers, mimicking the contact order parameter popular in protein folding. In order to better quantify the findings, we perform a theoretical analysis to capture the stochastic processes of collapse and dimerization by using the dynamical disorder model.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0249314","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dimerization and subsequent aggregation of polymers and biopolymers often occur under nonequilibrium conditions. When the initial state of the polymer is not collapsed, or the final folded native state, the dynamics of dimerization can follow a course sensitive to both the initial conditions and the conformational dynamics. Here, we study the dimerization process by using computer simulations and analytical theory, where the two monomeric polymer chains are in the elongated state and are initially placed at a separation distance, d0. Subsequent dynamics lead to the concurrent processes of collapse, dimerization, and/or escape. We employ Langevin dynamics simulations with a coarse-grained model of the polymer to capture certain aspects of the dimerization process. At separations d0 much shorter than the length of the monomeric polymer, the dimerization could happen fast and irreversibly from the partly extended polymer state itself. At an initial separation larger than a critical distance, dc, the polymer collapse precedes dimerization, and a significant number of single polymers do not dimerize within the time scale of simulations. To quantify these competitions, we introduce several time-dependent order parameters, namely, (i) the time-dependent radius of gyration RG(t) of individual polymers describing the conformational state of the polymer, (ii) a center-to-center of mass distance parameter RMM, and (iii) a time dependent overlap function Q(t) between the two monomeric polymers, mimicking the contact order parameter popular in protein folding. In order to better quantify the findings, we perform a theoretical analysis to capture the stochastic processes of collapse and dimerization by using the dynamical disorder model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信