Woo Young Sun, Do-Sang Lee, Jung Hyun Park, Ok-Hee Kim, Ho Joong Choi, Say-June Kim
{"title":"Utilizing miR-34a-Loaded HER2-Targeting Exosomes to Improve Breast Cancer Treatment: Insights From an Animal Model.","authors":"Woo Young Sun, Do-Sang Lee, Jung Hyun Park, Ok-Hee Kim, Ho Joong Choi, Say-June Kim","doi":"10.4048/jbc.2024.0262","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Exosomes, nanoscale vesicles with high biocompatibility, were engineered to express human epidermal growth factor receptor 2 (HER2)-binding peptides and carry miR-34a, targeting HER2 and programmed death-ligand 1 (PD-L1)-positive breast cancer cells.</p><p><strong>Methods: </strong>An <i>in vivo</i> xenograft breast cancer model was established by subcutaneously injecting breast cancer cells of both HER2 and PD-L1 positivity (SK-BR3 cells) into the buttocks of BALB/c nude mice. miR-34a-loaded HER2-targeting exosomes, termed tEx[34a], were engineered by transfecting human adipose-derived mesenchymal stem cells with the pDisplay vector to express HER2-binding peptides (P51 peptide). Purified exosomes were then loaded with miR-34a, a tumor-suppressor miRNA, using the Exo-Fect transfection kit, creating tEx[34a] for targeted cancer therapy.</p><p><strong>Results: </strong>Intravenous administration of miR-34a-loaded HER2-targeting exosomes, referred to as tEx[34a], demonstrated superior targetability compared to other materials, such as natural exosomes, miR-34a-loaded exosomes, and unloaded HER2-targeting exosomes. <i>In vivo</i> experiments using mouse breast cancer xenograft models revealed that the administration of tEx[34a] resulted in the smallest tumor size and lowest tumor weight when compared to all other groups. Notably, tEx[34a] treatment significantly reduced PD-L1 expression in breast cancer tissue compared to the other groups. Furthermore, tEx[34a] administration led to the highest upregulation of pro-apoptotic markers (Bax, PARP, and BIM) and the lowest downregulation of the anti-apoptotic marker Bcl-xL, as confirmed through various methods including RT-PCR, Western blot analysis, and immunofluorescence.</p><p><strong>Conclusion: </strong>MiR-34a-loaded HER2-targeting exosomes demonstrate strong anticancer efficacy by selectively binding to HER2-positive breast cancer cells and effectively suppressing PD-L1 expression.</p>","PeriodicalId":15206,"journal":{"name":"Journal of Breast Cancer","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4048/jbc.2024.0262","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Exosomes, nanoscale vesicles with high biocompatibility, were engineered to express human epidermal growth factor receptor 2 (HER2)-binding peptides and carry miR-34a, targeting HER2 and programmed death-ligand 1 (PD-L1)-positive breast cancer cells.
Methods: An in vivo xenograft breast cancer model was established by subcutaneously injecting breast cancer cells of both HER2 and PD-L1 positivity (SK-BR3 cells) into the buttocks of BALB/c nude mice. miR-34a-loaded HER2-targeting exosomes, termed tEx[34a], were engineered by transfecting human adipose-derived mesenchymal stem cells with the pDisplay vector to express HER2-binding peptides (P51 peptide). Purified exosomes were then loaded with miR-34a, a tumor-suppressor miRNA, using the Exo-Fect transfection kit, creating tEx[34a] for targeted cancer therapy.
Results: Intravenous administration of miR-34a-loaded HER2-targeting exosomes, referred to as tEx[34a], demonstrated superior targetability compared to other materials, such as natural exosomes, miR-34a-loaded exosomes, and unloaded HER2-targeting exosomes. In vivo experiments using mouse breast cancer xenograft models revealed that the administration of tEx[34a] resulted in the smallest tumor size and lowest tumor weight when compared to all other groups. Notably, tEx[34a] treatment significantly reduced PD-L1 expression in breast cancer tissue compared to the other groups. Furthermore, tEx[34a] administration led to the highest upregulation of pro-apoptotic markers (Bax, PARP, and BIM) and the lowest downregulation of the anti-apoptotic marker Bcl-xL, as confirmed through various methods including RT-PCR, Western blot analysis, and immunofluorescence.
Conclusion: MiR-34a-loaded HER2-targeting exosomes demonstrate strong anticancer efficacy by selectively binding to HER2-positive breast cancer cells and effectively suppressing PD-L1 expression.
期刊介绍:
The Journal of Breast Cancer (abbreviated as ''J Breast Cancer'') is the official journal of the Korean Breast Cancer Society, which is issued quarterly in the last day of March, June, September, and December each year since 1998. All the contents of the Journal is available online at the official journal website (http://ejbc.kr) under open access policy. The journal aims to provide a forum for the academic communication between medical doctors, basic science researchers, and health care professionals to be interested in breast cancer. To get this aim, we publish original investigations, review articles, brief communications including case reports, editorial opinions on the topics of importance to breast cancer, and welcome new research findings and epidemiological studies, especially when they contain a regional data to grab the international reader''s interest. Although the journal is mainly dealing with the issues of breast cancer, rare cases among benign breast diseases or evidence-based scientifically written articles providing useful information for clinical practice can be published as well.