Effect of Pixel Offset Adjustments for XY Plane Dimensional Compensation in Digital Light Processing 3D Printing on the Surface Trueness and Fit of Zirconia Crowns.
KeunBaDa Son, Ji-Min Lee, Kyoung-Jun Jang, Sang-Kyu Lee, Jun Ho Hwang, Jong Hoon Lee, Hyun Deok Kim, So-Yeun Kim, Kyu-Bok Lee
{"title":"Effect of Pixel Offset Adjustments for XY Plane Dimensional Compensation in Digital Light Processing 3D Printing on the Surface Trueness and Fit of Zirconia Crowns.","authors":"KeunBaDa Son, Ji-Min Lee, Kyoung-Jun Jang, Sang-Kyu Lee, Jun Ho Hwang, Jong Hoon Lee, Hyun Deok Kim, So-Yeun Kim, Kyu-Bok Lee","doi":"10.3390/jfb16030103","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the effect of pixel offset adjustments in digital light processing (DLP) three-dimensional (3D) printing on the marginal and internal fit and surface trueness of zirconia crowns. Zirconia crowns were designed using dental computer-aided design software (Dentbird; Imagoworks) and fabricated with a vat photopolymerization DLP 3D printer (TD6+; 3D Controls) under three pixel offset conditions (-1, 0, and 1). Pixel offset refers to the controlled modification of the outermost pixels in the XY plane during printing to compensate for potential dimensional inaccuracies. The marginal and internal fit was assessed using a triple-scan protocol and quantified using root mean square (RMS) values. Surface trueness was evaluated by measuring RMS, positive and negative errors between the designed and fabricated crowns. Statistical analyses included one-way ANOVA and Pearson correlation analysis (α = 0.05). The Pixel offset had a significant effect on fit accuracy and surface trueness (<i>p</i> < 0.05). Higher pixel offsets increased marginal discrepancies (<i>p</i> = 0.004), with the marginal gap exceeding 120 µm at a pixel offset of 1 (114.5 ± 14.6 µm), while a pixel offset of -1 (85.5 ± 18.6 µm) remained within acceptable limits (<i>p</i> = 0.003). Surface trueness worsened with increasing pixel offset, showing greater positive errors (<i>p</i> < 0.001). Optimizing pixel offset in DLP 3D printing is crucial to ensuring clinically acceptable zirconia crowns. Improper settings may increase marginal discrepancies and surface errors, compromising restoration accuracy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16030103","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the effect of pixel offset adjustments in digital light processing (DLP) three-dimensional (3D) printing on the marginal and internal fit and surface trueness of zirconia crowns. Zirconia crowns were designed using dental computer-aided design software (Dentbird; Imagoworks) and fabricated with a vat photopolymerization DLP 3D printer (TD6+; 3D Controls) under three pixel offset conditions (-1, 0, and 1). Pixel offset refers to the controlled modification of the outermost pixels in the XY plane during printing to compensate for potential dimensional inaccuracies. The marginal and internal fit was assessed using a triple-scan protocol and quantified using root mean square (RMS) values. Surface trueness was evaluated by measuring RMS, positive and negative errors between the designed and fabricated crowns. Statistical analyses included one-way ANOVA and Pearson correlation analysis (α = 0.05). The Pixel offset had a significant effect on fit accuracy and surface trueness (p < 0.05). Higher pixel offsets increased marginal discrepancies (p = 0.004), with the marginal gap exceeding 120 µm at a pixel offset of 1 (114.5 ± 14.6 µm), while a pixel offset of -1 (85.5 ± 18.6 µm) remained within acceptable limits (p = 0.003). Surface trueness worsened with increasing pixel offset, showing greater positive errors (p < 0.001). Optimizing pixel offset in DLP 3D printing is crucial to ensuring clinically acceptable zirconia crowns. Improper settings may increase marginal discrepancies and surface errors, compromising restoration accuracy.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.