Antibacterial and Antibiofilm Activity of Layers Enriched with Silver Nanoparticles on Orthodontic Microimplants.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Magdalena Sycińska-Dziarnowska, Magdalena Ziąbka, Katarzyna Cholewa-Kowalska, Karolina Klesiewicz, Gianrico Spagnuolo, Steven J Lindauer, Hyo-Sang Park, Krzysztof Woźniak
{"title":"Antibacterial and Antibiofilm Activity of Layers Enriched with Silver Nanoparticles on Orthodontic Microimplants.","authors":"Magdalena Sycińska-Dziarnowska, Magdalena Ziąbka, Katarzyna Cholewa-Kowalska, Karolina Klesiewicz, Gianrico Spagnuolo, Steven J Lindauer, Hyo-Sang Park, Krzysztof Woźniak","doi":"10.3390/jfb16030078","DOIUrl":null,"url":null,"abstract":"<p><p>Orthodontic microimplants have revolutionized anchorage in orthodontics but remain vulnerable to microbial colonization, potentially leading to infection and failure. Surface modifications incorporating silver nanoparticles (AgNPs) offer antimicrobial benefits, providing long-term protection against bacterial infections, while improving partial osseointegration. This study investigates hybrid coatings enriched with AgNPs, calcium (Ca), and phosphorus (P) to improve antimicrobial efficacy and reduce biofilm formation. Microimplants fabricated from the Ti6Al4V alloy were divided into six groups with varying surface treatments, including etching in hydrofluoric acid and hybrid layers containing 0.5 mol% AgNPs and CaP. Antibacterial activity was evaluated using agar diffusion and biofilm formation assays against <i>S. aureus</i>, <i>E. coli</i>, and <i>S. mutans</i>. Surface roughness was analyzed and correlated with biofilm formation. The model assessing the impact of biomaterials on <i>S. aureus</i> biofilm revealed a strong association (R<sup>2</sup> = 0.94), with biomaterial choice significantly influencing biofilm formation. The model for <i>E. coli</i> biofilm exhibited exceptional predictability (R<sup>2</sup> = 0.99). The model for <i>S. mutans</i> biofilm demonstrated an association (R<sup>2</sup> = 0.68). Hybrid coatings exhibited a promising antimicrobial activity. Biofilm formation was higher on microimplants with rougher surfaces. Hybrid coatings enriched with AgNPs and CaP enhance antimicrobial properties and partially reduce biofilm formation. It is suggested that the optimization of microimplant surface areas varies according to function. An enhanced performance can be achieved by maintaining a smooth surface for soft tissue contact, while incorporating a rough surface enriched with bactericidal and bioactive modifiers for bone contact areas.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16030078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Orthodontic microimplants have revolutionized anchorage in orthodontics but remain vulnerable to microbial colonization, potentially leading to infection and failure. Surface modifications incorporating silver nanoparticles (AgNPs) offer antimicrobial benefits, providing long-term protection against bacterial infections, while improving partial osseointegration. This study investigates hybrid coatings enriched with AgNPs, calcium (Ca), and phosphorus (P) to improve antimicrobial efficacy and reduce biofilm formation. Microimplants fabricated from the Ti6Al4V alloy were divided into six groups with varying surface treatments, including etching in hydrofluoric acid and hybrid layers containing 0.5 mol% AgNPs and CaP. Antibacterial activity was evaluated using agar diffusion and biofilm formation assays against S. aureus, E. coli, and S. mutans. Surface roughness was analyzed and correlated with biofilm formation. The model assessing the impact of biomaterials on S. aureus biofilm revealed a strong association (R2 = 0.94), with biomaterial choice significantly influencing biofilm formation. The model for E. coli biofilm exhibited exceptional predictability (R2 = 0.99). The model for S. mutans biofilm demonstrated an association (R2 = 0.68). Hybrid coatings exhibited a promising antimicrobial activity. Biofilm formation was higher on microimplants with rougher surfaces. Hybrid coatings enriched with AgNPs and CaP enhance antimicrobial properties and partially reduce biofilm formation. It is suggested that the optimization of microimplant surface areas varies according to function. An enhanced performance can be achieved by maintaining a smooth surface for soft tissue contact, while incorporating a rough surface enriched with bactericidal and bioactive modifiers for bone contact areas.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信