Amphoteric ionic hydrogels containing graphene oxide and bioactive glass loaded with BMP-2 significantly promoted the proliferation and osteogenic differentiation of BMSCs.
{"title":"Amphoteric ionic hydrogels containing graphene oxide and bioactive glass loaded with BMP-2 significantly promoted the proliferation and osteogenic differentiation of BMSCs.","authors":"Yaru Zhu, Ruiming Yan, Tao Wang, Qidong Wang","doi":"10.1080/09205063.2025.2480881","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of bone nonunion is a tricky challenge, and the development of bone tissue engineering has provided a direction for the treatment of bone nonunion, making the search for suitable tissue-engineered scaffolds particularly important. Three hydrogel scaffolds were constructed, their physical properties and osteogenesis-promoting properties were compared, and the characteristics of the three scaffolds were studied <i>in vivo</i> and <i>in vitro</i>. Z-CS/BG/GO group scaffolds have more uniform pore size and porosity than other groups, with better inter-pore connectivity. The scaffolds were favorable for BMP-2 loading and possessed good mechanical properties while enabling smoother drug release, thus achieving good promotion of proliferation and bone differentiation of BMSCs. So, Z-CS/BG/GO scaffolds are good materials to promote the differentiation of BMSCs and bone formation.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2480881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of bone nonunion is a tricky challenge, and the development of bone tissue engineering has provided a direction for the treatment of bone nonunion, making the search for suitable tissue-engineered scaffolds particularly important. Three hydrogel scaffolds were constructed, their physical properties and osteogenesis-promoting properties were compared, and the characteristics of the three scaffolds were studied in vivo and in vitro. Z-CS/BG/GO group scaffolds have more uniform pore size and porosity than other groups, with better inter-pore connectivity. The scaffolds were favorable for BMP-2 loading and possessed good mechanical properties while enabling smoother drug release, thus achieving good promotion of proliferation and bone differentiation of BMSCs. So, Z-CS/BG/GO scaffolds are good materials to promote the differentiation of BMSCs and bone formation.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.