Obesity-Induced PVAT Dysfunction and Atherosclerosis Development: The Role of GHSR-1a in Increased Macrophage Infiltration and Adipocytokine Secretion.
Sorin Nicolae Peiu, Florin Zugun-Eloae, Bogdan Stoica, Ecaterina Anisie, Diana Gabriela Iosep, Mihai Danciu, Iustina Silivestru-Crețu, Fawzy Akad, Andrei Nicolae Avadanei, Laura Condur, Radu Florin Popa, Veronica Mocanu
{"title":"Obesity-Induced PVAT Dysfunction and Atherosclerosis Development: The Role of GHSR-1a in Increased Macrophage Infiltration and Adipocytokine Secretion.","authors":"Sorin Nicolae Peiu, Florin Zugun-Eloae, Bogdan Stoica, Ecaterina Anisie, Diana Gabriela Iosep, Mihai Danciu, Iustina Silivestru-Crețu, Fawzy Akad, Andrei Nicolae Avadanei, Laura Condur, Radu Florin Popa, Veronica Mocanu","doi":"10.3390/jcdd12030087","DOIUrl":null,"url":null,"abstract":"<p><p>In obesity, recent research revealed that increased expression of the growth hormone secretagogue receptor (GHSR) in macrophages plays a pivotal role in the development of meta-inflammation, promoting macrophage infiltration and pro-inflammatory polarization. This study aimed to examine the association between GHSR-1a expression in atherosclerotic plaques and adjacent perivascular adipose tissue (PVAT) from 11 patients with obesity and peripheral artery disease (PAD) who underwent revascularization procedures. Immunohistochemistry was used to assess the expression of CD68, CD80, and CD14, while tissue homogenate levels of adiponectin, leptin, IL-6, and CRP were quantified via ELISA. Serum markers of inflammation were also measured. Among patients with GHSR-1a-positive (+) macrophages in atherosclerotic plaques, we observed significantly higher white blood cell counts and platelet-to-lymphocyte ratios in serum, a lower adiponectin-to-leptin ratio, and elevated IL-6 levels in both arterial and PVAT homogenates. Our findings suggest a link between GHSR-1a and macrophage/monocyte infiltration, macrophage polarization, and adipocytokine secretion in atherosclerotic plaques associated with obesity-induced PVAT dysfunction.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12030087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In obesity, recent research revealed that increased expression of the growth hormone secretagogue receptor (GHSR) in macrophages plays a pivotal role in the development of meta-inflammation, promoting macrophage infiltration and pro-inflammatory polarization. This study aimed to examine the association between GHSR-1a expression in atherosclerotic plaques and adjacent perivascular adipose tissue (PVAT) from 11 patients with obesity and peripheral artery disease (PAD) who underwent revascularization procedures. Immunohistochemistry was used to assess the expression of CD68, CD80, and CD14, while tissue homogenate levels of adiponectin, leptin, IL-6, and CRP were quantified via ELISA. Serum markers of inflammation were also measured. Among patients with GHSR-1a-positive (+) macrophages in atherosclerotic plaques, we observed significantly higher white blood cell counts and platelet-to-lymphocyte ratios in serum, a lower adiponectin-to-leptin ratio, and elevated IL-6 levels in both arterial and PVAT homogenates. Our findings suggest a link between GHSR-1a and macrophage/monocyte infiltration, macrophage polarization, and adipocytokine secretion in atherosclerotic plaques associated with obesity-induced PVAT dysfunction.