Identification of an appropriate reference gene for normalization of qRT-PCR expression analyses in human breast cancer cell lines: application to L-arginine depletion studies.

IF 2.7 3区 医学 Q3 ONCOLOGY
Antonia Röglin, Rainer Böger, Fiona Kleinsang, Juliane Hannemann
{"title":"Identification of an appropriate reference gene for normalization of qRT-PCR expression analyses in human breast cancer cell lines: application to L-arginine depletion studies.","authors":"Antonia Röglin, Rainer Böger, Fiona Kleinsang, Juliane Hannemann","doi":"10.1007/s00432-025-06165-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Quantitative real-time PCR (qRT-PCR) represents a robust methodology to investigate alterations in gene expression patterns during tumorigenesis. The quantification of target gene expression is conventionally standardized through normalization against a stably expressed reference gene. However, the expression profile of a specific reference gene can exhibit variability across different tissue types and diverse physiological conditions. This study aimed to identify a suitable reference gene from a pool of ten potential candidates for the comparison of gene expression profiles between six human breast cell lines, comprising both normal breast (MCF-12A) and breast cancer cells (MCF-7, BT-474, SK-BR-3, MDA-MB-468, MDA-MB-231).</p><p><strong>Methods: </strong>Four different mathematical approaches were used to calculate the stability of reference gene expression (comparative ΔCt method, NormFinder, coefficient of variation and RefFinder).</p><p><strong>Results: </strong>Stability analysis identified ACTB as a suitable reference gene across all cell lines. As we are specifically interested in studying metabolic adaptation of breast cancer, we applied the same approach to identify a suitable reference gene also after maintaining the cell lines in L-arginine-deficient medium for up to 72 h. The stability ranking of reference genes fluctuated after L-arginine was depleted.</p><p><strong>Conclusion: </strong>In the context of investigating specific cell lines under certain conditions, we propose the identification of reference genes that exhibit optimal stability and suitability.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"151 3","pages":"122"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-025-06165-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Quantitative real-time PCR (qRT-PCR) represents a robust methodology to investigate alterations in gene expression patterns during tumorigenesis. The quantification of target gene expression is conventionally standardized through normalization against a stably expressed reference gene. However, the expression profile of a specific reference gene can exhibit variability across different tissue types and diverse physiological conditions. This study aimed to identify a suitable reference gene from a pool of ten potential candidates for the comparison of gene expression profiles between six human breast cell lines, comprising both normal breast (MCF-12A) and breast cancer cells (MCF-7, BT-474, SK-BR-3, MDA-MB-468, MDA-MB-231).

Methods: Four different mathematical approaches were used to calculate the stability of reference gene expression (comparative ΔCt method, NormFinder, coefficient of variation and RefFinder).

Results: Stability analysis identified ACTB as a suitable reference gene across all cell lines. As we are specifically interested in studying metabolic adaptation of breast cancer, we applied the same approach to identify a suitable reference gene also after maintaining the cell lines in L-arginine-deficient medium for up to 72 h. The stability ranking of reference genes fluctuated after L-arginine was depleted.

Conclusion: In the context of investigating specific cell lines under certain conditions, we propose the identification of reference genes that exhibit optimal stability and suitability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
2.80%
发文量
577
审稿时长
2 months
期刊介绍: The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses. The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信