Identification of a novel phage depolymerase against ST11 K64 carbapenem-resistant Klebsiella pneumoniae and its therapeutic potential.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Peini Yang, Bin Shan, Xing Hu, Li Xue, Guibo Song, Pingan He, Xu Yang
{"title":"Identification of a novel phage depolymerase against ST11 K64 carbapenem-resistant <i>Klebsiella pneumoniae</i> and its therapeutic potential.","authors":"Peini Yang, Bin Shan, Xing Hu, Li Xue, Guibo Song, Pingan He, Xu Yang","doi":"10.1128/jb.00387-24","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) is a clinical pathogen with a high mortality rate, and its clinical management and infection control have become a serious challenge. Phage-encoded depolymerase cleaves the capsular polysaccharide, a major virulence factor of <i>K. pneumoniae</i>. This study aimed to identify a phage depolymerase targeting ST11 K64 CRKP, evaluate its antimicrobial activity and therapeutic efficacy, and provide new alternative therapeutic strategies for K64 CRKP. Phages were screened from untreated hospital sewage using clinically isolated CRKP as the host bacterium. The host range, efficiency of plaque formation, optimal multiplicity of infection, adsorption efficiency, and one-step growth curve of phage vB_KpnP_IME1309 were determined by the double-layer agar plate culture method. The morphology of the phage was observed by transmission electron microscopy. Phage nucleic acids were extracted for whole-genome sequencing, and the phage-encoded depolymerase gene ORF37 was amplified by polymerase chain reaction. Next, a recombinant plasmid was constructed to induce depolymerase expression, which was verified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. <i>In vitro</i> bactericidal activity was determined using a combined serum assay, and the anti-<i>K</i>. <i>pneumoniae</i> biofilm effect of depolymerase was determined by crystal violet staining. Finally, a <i>Galleria mellonella</i> larvae infection model was established to investigate the therapeutic effect of depolymerase on larvae <i>in vivo</i>. Here, we isolated and characterized a phage vB_KpnP_IME1309 targeting ST11 K64 CRKP, which featured a latent period of 20 min and a burst size of approximately 290 plaque-forming units/cell. It contained 41 predicted open reading frames, of which ORF37 encoded depolymerase. The expressed and purified depolymerase Dep37 cleaved only ST11 K64 CRKP and formed a translucent halo on the agar plate. Dep37 increased the susceptibility of <i>K. pneumoniae</i> B1 to serum killing, inhibited CRKP biofilm formation, and degraded mature biofilms. The combination of Dep37 and kanamycin was significantly more effective in treating CRKP biofilms compared to either Dep37 or kanamycin alone. An injection of Dep37 at 5 min and 2 h after the CRKP infection of <i>Galleria mellonella</i> larvae increased their survival rates by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a potential method for capsule typing of <i>K. pneumoniae</i>, showing great promise for the development of novel alternative therapeutic strategies against ST11 K64 CRKP.</p><p><strong>Importance: </strong>A novel phage vB_KpnP_IME1309 targeting ST11 K64 carbapenem-resistant <i>Klebsiella pneumoniae</i> (CRKP) was isolated and characterized. The ORF37 encoding depolymerase gene of phage vB_KpnP_IME1309 was successfully expressed and purified. Depolymerase increases the susceptibility of CRKP to serum killing, inhibits CRKP biofilm formation, and degrades mature biofilms. The combination of depolymerase and kanamycin is significantly more effective than either depolymerase or kanamycin alone in the treatment of CRKP biofilm. Depolymerase injection at 5 min and 2 h after CRKP infection of <i>Galleria mellonella</i> larvae increased the survival rate of larvae by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a method for the development of novel alternative therapeutic strategies against ST11 K64 CRKP.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0038724"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00387-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a clinical pathogen with a high mortality rate, and its clinical management and infection control have become a serious challenge. Phage-encoded depolymerase cleaves the capsular polysaccharide, a major virulence factor of K. pneumoniae. This study aimed to identify a phage depolymerase targeting ST11 K64 CRKP, evaluate its antimicrobial activity and therapeutic efficacy, and provide new alternative therapeutic strategies for K64 CRKP. Phages were screened from untreated hospital sewage using clinically isolated CRKP as the host bacterium. The host range, efficiency of plaque formation, optimal multiplicity of infection, adsorption efficiency, and one-step growth curve of phage vB_KpnP_IME1309 were determined by the double-layer agar plate culture method. The morphology of the phage was observed by transmission electron microscopy. Phage nucleic acids were extracted for whole-genome sequencing, and the phage-encoded depolymerase gene ORF37 was amplified by polymerase chain reaction. Next, a recombinant plasmid was constructed to induce depolymerase expression, which was verified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vitro bactericidal activity was determined using a combined serum assay, and the anti-K. pneumoniae biofilm effect of depolymerase was determined by crystal violet staining. Finally, a Galleria mellonella larvae infection model was established to investigate the therapeutic effect of depolymerase on larvae in vivo. Here, we isolated and characterized a phage vB_KpnP_IME1309 targeting ST11 K64 CRKP, which featured a latent period of 20 min and a burst size of approximately 290 plaque-forming units/cell. It contained 41 predicted open reading frames, of which ORF37 encoded depolymerase. The expressed and purified depolymerase Dep37 cleaved only ST11 K64 CRKP and formed a translucent halo on the agar plate. Dep37 increased the susceptibility of K. pneumoniae B1 to serum killing, inhibited CRKP biofilm formation, and degraded mature biofilms. The combination of Dep37 and kanamycin was significantly more effective in treating CRKP biofilms compared to either Dep37 or kanamycin alone. An injection of Dep37 at 5 min and 2 h after the CRKP infection of Galleria mellonella larvae increased their survival rates by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a potential method for capsule typing of K. pneumoniae, showing great promise for the development of novel alternative therapeutic strategies against ST11 K64 CRKP.

Importance: A novel phage vB_KpnP_IME1309 targeting ST11 K64 carbapenem-resistant Klebsiella pneumoniae (CRKP) was isolated and characterized. The ORF37 encoding depolymerase gene of phage vB_KpnP_IME1309 was successfully expressed and purified. Depolymerase increases the susceptibility of CRKP to serum killing, inhibits CRKP biofilm formation, and degrades mature biofilms. The combination of depolymerase and kanamycin is significantly more effective than either depolymerase or kanamycin alone in the treatment of CRKP biofilm. Depolymerase injection at 5 min and 2 h after CRKP infection of Galleria mellonella larvae increased the survival rate of larvae by up to 73% and 53%, respectively. Depolymerase Dep37 may be used as a method for the development of novel alternative therapeutic strategies against ST11 K64 CRKP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信