{"title":"Stannous Fluoride in Toothpastes: A Review of Its Clinical Effects and Likely Mechanisms of Action.","authors":"John W Nicholson","doi":"10.3390/jfb16030073","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews the topic of stannous fluoride as an anti-caries additive in toothpastes. It is based on a literature survey carried out using Science Direct, supplemented by information from PubMed. The keywords used were stannous fluoride, toothpaste, clinical effects, caries, hypersensitivity, gingival health, structure and aqueous solutions. The initial searches covered the period 2015-2024 and identified 57 references. Older references cited in these papers, and also papers already known to the author, were also included. The information thus obtained shows that stannous fluoride has three main effects, namely, reduction in the viability of the oral biofilm, increase in remineralisation of the hydroxyapatite tooth mineral and occlusion of dentinal tubules leading to reduced hypersensitivity. Stannous fluoride was shown to be the most effective of all the fluoride additives used in toothpastes. In much of the dental literature, this is attributed to the effects of Sn<sup>2+</sup> ions. However, as has been shown extensively in the wider scientific literature, free Sn<sup>2+</sup> ions do not occur in aqueous systems. Rather, the initial products of the dissolution of SnF<sub>2</sub> is undissociated, hydrated SnF<sub>2</sub> and SnF<sup>+</sup> ions. These gradually exchange fluoride to form Sn(OH)<sub>2</sub> and Sn(OH)<sup>+</sup>. Their likely mechanism of action based on their toxicity towards oral micro-organisms and their interaction with hydroxyapatite is discussed.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16030073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews the topic of stannous fluoride as an anti-caries additive in toothpastes. It is based on a literature survey carried out using Science Direct, supplemented by information from PubMed. The keywords used were stannous fluoride, toothpaste, clinical effects, caries, hypersensitivity, gingival health, structure and aqueous solutions. The initial searches covered the period 2015-2024 and identified 57 references. Older references cited in these papers, and also papers already known to the author, were also included. The information thus obtained shows that stannous fluoride has three main effects, namely, reduction in the viability of the oral biofilm, increase in remineralisation of the hydroxyapatite tooth mineral and occlusion of dentinal tubules leading to reduced hypersensitivity. Stannous fluoride was shown to be the most effective of all the fluoride additives used in toothpastes. In much of the dental literature, this is attributed to the effects of Sn2+ ions. However, as has been shown extensively in the wider scientific literature, free Sn2+ ions do not occur in aqueous systems. Rather, the initial products of the dissolution of SnF2 is undissociated, hydrated SnF2 and SnF+ ions. These gradually exchange fluoride to form Sn(OH)2 and Sn(OH)+. Their likely mechanism of action based on their toxicity towards oral micro-organisms and their interaction with hydroxyapatite is discussed.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.