Runping Chen, Gerd J Kunde, Louis Tao, Andrew T Sornborger
{"title":"Foveal vision reduces neural resources in agent-based game learning.","authors":"Runping Chen, Gerd J Kunde, Louis Tao, Andrew T Sornborger","doi":"10.3389/fnins.2025.1547264","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient processing of information is crucial for the optimization of neural resources in both biological and artificial visual systems. In this paper, we study the efficiency that may be obtained via the use of a fovea. Using biologically-motivated agents, we study visual information processing, learning, and decision making in a controlled artificial environment, namely the Atari Pong video game. We compare the resources necessary to play Pong between agents with and without a fovea. Our study shows that a fovea can significantly reduce the neural resources, in the form of number of neurons, number of synapses, and number of computations, while at the same time maintaining performance at playing Pong. To our knowledge, this is the first study in which an agent must simultaneously optimize its visual system, along with its decision making and action generation capabilities. That is, the visual system is integral to a complete agent.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1547264"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1547264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient processing of information is crucial for the optimization of neural resources in both biological and artificial visual systems. In this paper, we study the efficiency that may be obtained via the use of a fovea. Using biologically-motivated agents, we study visual information processing, learning, and decision making in a controlled artificial environment, namely the Atari Pong video game. We compare the resources necessary to play Pong between agents with and without a fovea. Our study shows that a fovea can significantly reduce the neural resources, in the form of number of neurons, number of synapses, and number of computations, while at the same time maintaining performance at playing Pong. To our knowledge, this is the first study in which an agent must simultaneously optimize its visual system, along with its decision making and action generation capabilities. That is, the visual system is integral to a complete agent.
期刊介绍:
Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.