Early detection and classification of Alzheimer's disease through data fusion of MRI and DTI images using the YOLOv11 neural network.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1554015
Wided Hechkel, Abdelhamid Helali
{"title":"Early detection and classification of Alzheimer's disease through data fusion of MRI and DTI images using the YOLOv11 neural network.","authors":"Wided Hechkel, Abdelhamid Helali","doi":"10.3389/fnins.2025.1554015","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide, affecting over 55 million people globally, with numbers expected to rise dramatically. Early detection and classification of AD are crucial for improving patient outcomes and slowing disease progression. However, conventional diagnostic approaches often fail to provide accurate classification in the early stages. This paper proposes a novel approach using advanced computer-aided diagnostic (CAD) systems and the YOLOv11 neural network for early detection and classification of AD. The YOLOv11 model leverages its advanced object detection capabilities to simultaneously localize and classify AD-related biomarkers by integrating multimodal data fusion of T2-weighted MRI and DTI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Regions of interest (ROIs) were selected and annotated based on known AD biomarkers, and the YOLOv11 model was trained to classify AD into four stages: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Mild Cognitive Impairment (MCI). The model achieved exceptional performance, with 93.6% precision, 91.6% recall, and 96.7% mAP50, demonstrating its ability to identify subtle biomarkers by combining MRI and DTI modalities. This work highlights the novelty of using YOLOv11 for simultaneous detection and classification, offering a promising strategy for early-stage AD diagnosis and classification.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1554015"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932999/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1554015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide, affecting over 55 million people globally, with numbers expected to rise dramatically. Early detection and classification of AD are crucial for improving patient outcomes and slowing disease progression. However, conventional diagnostic approaches often fail to provide accurate classification in the early stages. This paper proposes a novel approach using advanced computer-aided diagnostic (CAD) systems and the YOLOv11 neural network for early detection and classification of AD. The YOLOv11 model leverages its advanced object detection capabilities to simultaneously localize and classify AD-related biomarkers by integrating multimodal data fusion of T2-weighted MRI and DTI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Regions of interest (ROIs) were selected and annotated based on known AD biomarkers, and the YOLOv11 model was trained to classify AD into four stages: Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Mild Cognitive Impairment (MCI). The model achieved exceptional performance, with 93.6% precision, 91.6% recall, and 96.7% mAP50, demonstrating its ability to identify subtle biomarkers by combining MRI and DTI modalities. This work highlights the novelty of using YOLOv11 for simultaneous detection and classification, offering a promising strategy for early-stage AD diagnosis and classification.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信