Carolin Erbel, Matthias W Laschke, Tanja Grobecker-Karl, Matthias Karl
{"title":"Preclinical Performance of a Novel Dental Implant Design Reducing Mechanical Stress in Cortical Bone.","authors":"Carolin Erbel, Matthias W Laschke, Tanja Grobecker-Karl, Matthias Karl","doi":"10.3390/jfb16030102","DOIUrl":null,"url":null,"abstract":"<p><p>This animal study compared the healing performance of a novel implant design characterized by a shift in thread geometry and core diameter with two different surfaces with that of an apically tapered implant. Test Bioactive (n = 9), Test Porous (n = 7) and Control (n = 8) implants were placed in the mandibles of minipigs. Following healing, bone samples were harvested for determining bone-to-implant contact (BIC) and marginal bone loss (MBL). Comparative statistics were based on Levene's test, Shapiro-Wilk tests, the Kruskal-Wallis test and Wilcoxon tests with Holm correction (α = 0.05). The mean undersizing of the osteotomy was 0.15 mm for Control, while in the test groups 0.33 mm and 0.34 mm were calculated. Insertion torques ranged from 61.5 Ncm (Control) to 76.1 Ncm (Test Bioactive). Maximum BIC was seen in Test Porous with 55.83%, while Test Bioactive showed only 48.11%. MBL was 4.1 mm in Test Bioactive, while Test Porous and Control exhibited 2.8 mm. No significant differences between the implant groups were observed (<i>p</i> > 0.05). Despite greater undersizing, the novel implant type performed comparably to the established Control implants. The rougher surface of the bioactive implants increased the insertion torque and led to more MBL.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942938/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16030102","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This animal study compared the healing performance of a novel implant design characterized by a shift in thread geometry and core diameter with two different surfaces with that of an apically tapered implant. Test Bioactive (n = 9), Test Porous (n = 7) and Control (n = 8) implants were placed in the mandibles of minipigs. Following healing, bone samples were harvested for determining bone-to-implant contact (BIC) and marginal bone loss (MBL). Comparative statistics were based on Levene's test, Shapiro-Wilk tests, the Kruskal-Wallis test and Wilcoxon tests with Holm correction (α = 0.05). The mean undersizing of the osteotomy was 0.15 mm for Control, while in the test groups 0.33 mm and 0.34 mm were calculated. Insertion torques ranged from 61.5 Ncm (Control) to 76.1 Ncm (Test Bioactive). Maximum BIC was seen in Test Porous with 55.83%, while Test Bioactive showed only 48.11%. MBL was 4.1 mm in Test Bioactive, while Test Porous and Control exhibited 2.8 mm. No significant differences between the implant groups were observed (p > 0.05). Despite greater undersizing, the novel implant type performed comparably to the established Control implants. The rougher surface of the bioactive implants increased the insertion torque and led to more MBL.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.