Integrated metabolomics, transcriptomic, and phytohormonal analyses to study the effects of water stress and foliar abscisic acid application in Thymus species using LC-MS/MS.
Maryam Alipour, Maryam Haghighi, Mehdi Rahimmalek, Michael Reichelt, Laure Martinelli, Karin Groten, Axel Mithöfer
{"title":"Integrated metabolomics, transcriptomic, and phytohormonal analyses to study the effects of water stress and foliar abscisic acid application in <i>Thymus</i> species using LC-MS/MS.","authors":"Maryam Alipour, Maryam Haghighi, Mehdi Rahimmalek, Michael Reichelt, Laure Martinelli, Karin Groten, Axel Mithöfer","doi":"10.3389/fpls.2025.1557446","DOIUrl":null,"url":null,"abstract":"<p><p>Thyme species, including <i>Thymus vulgaris, T. kotschyanus</i> (drought-tolerant) and <i>T. serpyllum</i> (drought-sensitive), are valuable medicinal herbs. They are often grown in arid regions and are increasingly suffering from water stress due to climate change. Here, we analyzed the metabolome and expression of selected genes in leaves of these species under drought stress with and without treatment with the phytohormone abscisic acid (ABA). Among the terpenes, dominant metabolites in thyme, thymol was the most important terpenoid component, followed by thymoquinone, carvacrol and p-cymene in all three species. Drought stress reduced terpene concentrations, while moderate ABA levels increased them. <i>T. kotschyanus</i> showed the highest concentrations of thymol and carvacrol after combined treatment with drought and ABA. Metabolite accumulation was partially correlated with genes related to terpenoid biosynthesis. The combined treatment of drought stress and ABA resulted in a significant reduction of the stress hormone jasmonic acid and an increase of its biosynthetic precursor, OPDA (cis-12-oxophytodienoic acid), in all species. The present research results indicate that ABA treatment at moderate concentrations could be used as a measure to increase the production of some pharmaceutically active phenolic monoterpenes in <i>T. vulgaris, T. serpyllum</i> and <i>T. kotschyanus</i> and increase the stress resistance of the plants.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1557446"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933024/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1557446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thyme species, including Thymus vulgaris, T. kotschyanus (drought-tolerant) and T. serpyllum (drought-sensitive), are valuable medicinal herbs. They are often grown in arid regions and are increasingly suffering from water stress due to climate change. Here, we analyzed the metabolome and expression of selected genes in leaves of these species under drought stress with and without treatment with the phytohormone abscisic acid (ABA). Among the terpenes, dominant metabolites in thyme, thymol was the most important terpenoid component, followed by thymoquinone, carvacrol and p-cymene in all three species. Drought stress reduced terpene concentrations, while moderate ABA levels increased them. T. kotschyanus showed the highest concentrations of thymol and carvacrol after combined treatment with drought and ABA. Metabolite accumulation was partially correlated with genes related to terpenoid biosynthesis. The combined treatment of drought stress and ABA resulted in a significant reduction of the stress hormone jasmonic acid and an increase of its biosynthetic precursor, OPDA (cis-12-oxophytodienoic acid), in all species. The present research results indicate that ABA treatment at moderate concentrations could be used as a measure to increase the production of some pharmaceutically active phenolic monoterpenes in T. vulgaris, T. serpyllum and T. kotschyanus and increase the stress resistance of the plants.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.