Climate change impacts on the predicted geographic distribution of Betula tianschanica Rupr.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1528255
Hang Zhou, Ao Li, Xuequn Luo, Jiafeng Wang, Yihong Xie, Zhongping Lin, Donglai Hua
{"title":"Climate change impacts on the predicted geographic distribution of <i>Betula tianschanica</i> Rupr.","authors":"Hang Zhou, Ao Li, Xuequn Luo, Jiafeng Wang, Yihong Xie, Zhongping Lin, Donglai Hua","doi":"10.3389/fpls.2025.1528255","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong><i>Betula tianschanica</i> Rupr. is distributed in regions such as China, Kyrgyzstan, and Tajikistan. Owing to the impacts of climate change, it is increasingly threatened by habitat fragmentation, resulting in a precipitous decline in its population. Currently listed as endangered on the Red List of Trees of Central Asia, this species is predominantly found in the Tianshan Mountains. Examining the influence of climate change on the geographical distribution pattern of <i>Betula tianschanica</i> is crucial for the management and conservation of its wild resources.</p><p><strong>Methods: </strong>This study employed two models, maximum entropy (MaxEnt) and random forest (RF), combined with 116 distribution points of <i>Betula tianschanica</i> and 27 environmental factor variables, to investigate the environmental determinants of the distribution of <i>Betula tianschanica</i> and project its potential geographical distribution areas.</p><p><strong>Results: </strong>The MaxEnt model and the RF model determined the primary environmental factors influencing the potential distribution of <i>Betula tianschanica</i>. The MaxEnt model showed that the percentage of gravel volume in the lower soil layer and elevation are the most significant, while the RF model considered elevation and precipitation of the wettest quarter to be the most crucial. Both models unanimously asserted that elevation is the pivotal environmental element affecting the distribution of <i>Betula tianschanica</i>.The mean area under the curve (AUC) scores for the MaxEnt model and RF were 0.970 and 0.873, respectively, revealing that the MaxEnt model outperformed the RF model in predictive accuracy. Consequently, the present study employed the estimated geographical area for <i>Betula tianschanica</i> modeled by the MaxEnt model as a reference. Following the MaxEnt model's projected outcomes, <i>Betula tianschanica</i> is mainly located in territories such as the Tianshan Mountains, Ili River Basin, Lake Issyk-Kul, Turpan Basin, Irtysh River, Ulungur River, Bogda Mountains, Kazakh Hills, Lake Balkhash, Amu River, and the middle reaches of the Syr River.Within the MaxEnt model, the total suitable habitat area exhibits growth across all scenarios, with the exception of a decline observed during the 2041-2060 period under the SSP2-4.5 scenario. Remarkably, under the SSP58.5 scenario for the same timeframe, this area expands significantly by 42.7%. In contrast, the RF model demonstrated relatively minor fluctuations in the total suitable habitat area, with the highest recorded increase being 12.81%. This paper recommends establishing protected areas in the Tianshan Mountains, conducting long-term monitoring of its population dynamics, and enhancing international cooperation. In response to future climate change, climate refuges should be established and adaptive management implemented to ensure the survival and reproduction of <i>Betula tianschanica</i>.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1528255"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1528255","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Betula tianschanica Rupr. is distributed in regions such as China, Kyrgyzstan, and Tajikistan. Owing to the impacts of climate change, it is increasingly threatened by habitat fragmentation, resulting in a precipitous decline in its population. Currently listed as endangered on the Red List of Trees of Central Asia, this species is predominantly found in the Tianshan Mountains. Examining the influence of climate change on the geographical distribution pattern of Betula tianschanica is crucial for the management and conservation of its wild resources.

Methods: This study employed two models, maximum entropy (MaxEnt) and random forest (RF), combined with 116 distribution points of Betula tianschanica and 27 environmental factor variables, to investigate the environmental determinants of the distribution of Betula tianschanica and project its potential geographical distribution areas.

Results: The MaxEnt model and the RF model determined the primary environmental factors influencing the potential distribution of Betula tianschanica. The MaxEnt model showed that the percentage of gravel volume in the lower soil layer and elevation are the most significant, while the RF model considered elevation and precipitation of the wettest quarter to be the most crucial. Both models unanimously asserted that elevation is the pivotal environmental element affecting the distribution of Betula tianschanica.The mean area under the curve (AUC) scores for the MaxEnt model and RF were 0.970 and 0.873, respectively, revealing that the MaxEnt model outperformed the RF model in predictive accuracy. Consequently, the present study employed the estimated geographical area for Betula tianschanica modeled by the MaxEnt model as a reference. Following the MaxEnt model's projected outcomes, Betula tianschanica is mainly located in territories such as the Tianshan Mountains, Ili River Basin, Lake Issyk-Kul, Turpan Basin, Irtysh River, Ulungur River, Bogda Mountains, Kazakh Hills, Lake Balkhash, Amu River, and the middle reaches of the Syr River.Within the MaxEnt model, the total suitable habitat area exhibits growth across all scenarios, with the exception of a decline observed during the 2041-2060 period under the SSP2-4.5 scenario. Remarkably, under the SSP58.5 scenario for the same timeframe, this area expands significantly by 42.7%. In contrast, the RF model demonstrated relatively minor fluctuations in the total suitable habitat area, with the highest recorded increase being 12.81%. This paper recommends establishing protected areas in the Tianshan Mountains, conducting long-term monitoring of its population dynamics, and enhancing international cooperation. In response to future climate change, climate refuges should be established and adaptive management implemented to ensure the survival and reproduction of Betula tianschanica.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信