Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2025-03-20 DOI:10.3390/gels11030218
Min Yan, Jingcui Peng, Haoan Wu, Ming Ma, Yu Zhang
{"title":"Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy.","authors":"Min Yan, Jingcui Peng, Haoan Wu, Ming Ma, Yu Zhang","doi":"10.3390/gels11030218","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL), accounting for 31% of non-Hodgkin lymphomas, remains recalcitrant to conventional therapies due to chemoresistance, metastatic progression, and immunosuppressive microenvironments. We report a novel injectable Fe<sub>3</sub>O<sub>4</sub>@DMSA@Pt@PLGA-PEG-PLGA hydrogel system integrating magnetothermal therapy (MHT), chemodynamic therapy (CDT), and immunomodulation. Under alternating magnetic fields (AMF), the system achieves rapid therapeutic hyperthermia (50 °C within 7 min) while activating pH/temperature-dual responsive peroxidase (POD) -like activity in Fe<sub>3</sub>O<sub>4</sub>@DMSA@Pt nanoparticles. Catalytic efficiency under tumor-mimetic conditions was significantly higher than Fe<sub>3</sub>O<sub>4</sub>@DMSA controls, generating elevated reactive oxygen species (ROS). Flow cytometry revealed 75.9% apoptotic cell death in A20 lymphoma cells at 50 °C, significantly surpassing CDT alone (24.5%). Importantly, this dual mechanism induced immunogenic cell death (ICD) characterized by 4.1-fold CRT externalization, 68% HMGB1 nuclear depletion, and 40.74 nM ATP secretion. This triggered robust dendritic cell maturation (92% CD86<sup>+</sup>/CD80<sup>+</sup> DCs comparable to LPS controls) and T cell activation (16.9% CD25<sup>+</sup>/CD69<sup>+</sup> ratio, 130-fold baseline). Our findings validate the therapeutic potential of magnetothermal-chemodynamic synergy for DLBCL treatment, paving the way for innovative multi-mechanism therapeutic strategies against DLBCL with potential clinical translation prospects.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11030218","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse large B-cell lymphoma (DLBCL), accounting for 31% of non-Hodgkin lymphomas, remains recalcitrant to conventional therapies due to chemoresistance, metastatic progression, and immunosuppressive microenvironments. We report a novel injectable Fe3O4@DMSA@Pt@PLGA-PEG-PLGA hydrogel system integrating magnetothermal therapy (MHT), chemodynamic therapy (CDT), and immunomodulation. Under alternating magnetic fields (AMF), the system achieves rapid therapeutic hyperthermia (50 °C within 7 min) while activating pH/temperature-dual responsive peroxidase (POD) -like activity in Fe3O4@DMSA@Pt nanoparticles. Catalytic efficiency under tumor-mimetic conditions was significantly higher than Fe3O4@DMSA controls, generating elevated reactive oxygen species (ROS). Flow cytometry revealed 75.9% apoptotic cell death in A20 lymphoma cells at 50 °C, significantly surpassing CDT alone (24.5%). Importantly, this dual mechanism induced immunogenic cell death (ICD) characterized by 4.1-fold CRT externalization, 68% HMGB1 nuclear depletion, and 40.74 nM ATP secretion. This triggered robust dendritic cell maturation (92% CD86+/CD80+ DCs comparable to LPS controls) and T cell activation (16.9% CD25+/CD69+ ratio, 130-fold baseline). Our findings validate the therapeutic potential of magnetothermal-chemodynamic synergy for DLBCL treatment, paving the way for innovative multi-mechanism therapeutic strategies against DLBCL with potential clinical translation prospects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信