{"title":"Hydration Mechanism of Solid Waste Gelling Materials Containing Semi-Dry Desulfurization Ash.","authors":"Yunyun Li, Siqi Zhang, Meixiang Huang, Guodong Yang, Jiajie Li, Mengqi Ma, Wentao Hu, Wen Ni","doi":"10.3390/gels11030193","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the feasibility of using semi-dry desulfurization ash (DA) in combination with blast furnace slag (BFS) to prepare gelling materials, aiming to improve the resource utilization of DA. The effects of DA dosage and mechanical grinding on the compressive strength and hydration mechanism of BFS-DA gelling materials were investigated. The results showed that the optimum BFS-DA ratio was 60:40, and the compressive strengths were 14.21 MPa, 20.24 MPa, 43.50 MPa, and 46.27 MPa at 3, 7, 28, and 56 days, respectively. Mechanical grinding greatly improved the activity of the gel materials, with the greatest increase in compressive strength at 3, 7, 28, and 90 days for the BFS and DA mixed milled for 30 min, with increases of 89.86%, 66.36%, 24.56%, and 25.68%, respectively, and compressive strength of 26.22 MPa, 35.6 MPa, 58.33 MPa, and 63.97 MPa, respectively. The cumulative heat of hydration of BFS-DA slurry was about 120 J/g. The hydration mechanism showed that the main hydration products formed were ettringite, C-S-H gel, AFm, and Friedel's salt. Calcium sulfite in DA was participated in the hydration, and a new hydration product, Ca<sub>4</sub>Al<sub>2</sub>O<sub>6</sub>SO<sub>3</sub>·11H<sub>2</sub>O, was formed. DA can be effectively used to prepare BFS-based gelling materials, and its performance meets the requirements of GB/T 28294-2024 standard, which provides a potential solution for the utilization of DA resources and the reduction in the impact on the environment.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11030193","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the feasibility of using semi-dry desulfurization ash (DA) in combination with blast furnace slag (BFS) to prepare gelling materials, aiming to improve the resource utilization of DA. The effects of DA dosage and mechanical grinding on the compressive strength and hydration mechanism of BFS-DA gelling materials were investigated. The results showed that the optimum BFS-DA ratio was 60:40, and the compressive strengths were 14.21 MPa, 20.24 MPa, 43.50 MPa, and 46.27 MPa at 3, 7, 28, and 56 days, respectively. Mechanical grinding greatly improved the activity of the gel materials, with the greatest increase in compressive strength at 3, 7, 28, and 90 days for the BFS and DA mixed milled for 30 min, with increases of 89.86%, 66.36%, 24.56%, and 25.68%, respectively, and compressive strength of 26.22 MPa, 35.6 MPa, 58.33 MPa, and 63.97 MPa, respectively. The cumulative heat of hydration of BFS-DA slurry was about 120 J/g. The hydration mechanism showed that the main hydration products formed were ettringite, C-S-H gel, AFm, and Friedel's salt. Calcium sulfite in DA was participated in the hydration, and a new hydration product, Ca4Al2O6SO3·11H2O, was formed. DA can be effectively used to prepare BFS-based gelling materials, and its performance meets the requirements of GB/T 28294-2024 standard, which provides a potential solution for the utilization of DA resources and the reduction in the impact on the environment.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.