Giovanni Lorusso, Nicola Maggialetti, Luca De Marco, Sterpeta Guerra, Ilaria Villanova, Sara Greco, Chiara Morelli, Nicola Maria Lucarelli, Michele Mariano, Amato Antonio Stabile Ianora
{"title":"Evaluating Epicardial Fat Density Using ROI-Based Analysis: A Feasibility Study.","authors":"Giovanni Lorusso, Nicola Maggialetti, Luca De Marco, Sterpeta Guerra, Ilaria Villanova, Sara Greco, Chiara Morelli, Nicola Maria Lucarelli, Michele Mariano, Amato Antonio Stabile Ianora","doi":"10.3390/jcdd12030081","DOIUrl":null,"url":null,"abstract":"<p><p>Epicardial fat density (EFD) is implicated in cardiovascular diseases. This study aimed to assess the regional variability of epicardial fat density (EFD) using coronary computed tomography (CCT) and evaluate the feasibility of ROI-based measurements as an alternative to full segmentation. A retrospective analysis was conducted on 171 patients undergoing coronary CCT. EFD was measured on non-contrast scans acquired globally and in three predefined regions of interest (ROIs) for coronary calcium scoring: the aortic bulb, right posterolateral wall, and cardiac apex. Global EFD was quantified using semi-automated segmentation software (3D Slicer 5.6.2), while regional EFD values were manually determined. Statistical analyses were performed to compare global and regional EFD measurements. Global EFD averaged -83.92 ± 5.19 HU, while regional EFD showed significant variability. The aortic bulb had lower EFD values (-97.54 ± 12.80 HU) compared to the apex (-93.42 ± 18.94 HU) and right posterolateral wall (-94.99 ± 12.16 HU). Paired <i>t</i>-tests confirmed statistically significant differences between global and regional EFD values (<i>p</i> < 0.000). This study highlights significant regional variability in EFD across specific cardiac regions, suggesting that ROI-based assessments may not reliably reflect global EFD characteristics.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"12 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd12030081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Epicardial fat density (EFD) is implicated in cardiovascular diseases. This study aimed to assess the regional variability of epicardial fat density (EFD) using coronary computed tomography (CCT) and evaluate the feasibility of ROI-based measurements as an alternative to full segmentation. A retrospective analysis was conducted on 171 patients undergoing coronary CCT. EFD was measured on non-contrast scans acquired globally and in three predefined regions of interest (ROIs) for coronary calcium scoring: the aortic bulb, right posterolateral wall, and cardiac apex. Global EFD was quantified using semi-automated segmentation software (3D Slicer 5.6.2), while regional EFD values were manually determined. Statistical analyses were performed to compare global and regional EFD measurements. Global EFD averaged -83.92 ± 5.19 HU, while regional EFD showed significant variability. The aortic bulb had lower EFD values (-97.54 ± 12.80 HU) compared to the apex (-93.42 ± 18.94 HU) and right posterolateral wall (-94.99 ± 12.16 HU). Paired t-tests confirmed statistically significant differences between global and regional EFD values (p < 0.000). This study highlights significant regional variability in EFD across specific cardiac regions, suggesting that ROI-based assessments may not reliably reflect global EFD characteristics.