Dynamic interactions between cartilaginous and tendinous/ligamentous primordia during musculoskeletal integration.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-03-15 Epub Date: 2025-03-26 DOI:10.1242/dev.204512
Xinyi Yu, Ryosuke Kawakami, Shinsei Yambe, Yuki Yoshimoto, Takako Sasaki, Shinnosuke Higuchi, Hitomi Watanabe, Haruhiko Akiyama, Shigenori Miura, Kadi Hu, Gen Kondoh, Ramu Sagasaki, Masafumi Inui, Taiji Adachi, Denitsa Docheva, Takeshi Imamura, Chisa Shukunami
{"title":"Dynamic interactions between cartilaginous and tendinous/ligamentous primordia during musculoskeletal integration.","authors":"Xinyi Yu, Ryosuke Kawakami, Shinsei Yambe, Yuki Yoshimoto, Takako Sasaki, Shinnosuke Higuchi, Hitomi Watanabe, Haruhiko Akiyama, Shigenori Miura, Kadi Hu, Gen Kondoh, Ramu Sagasaki, Masafumi Inui, Taiji Adachi, Denitsa Docheva, Takeshi Imamura, Chisa Shukunami","doi":"10.1242/dev.204512","DOIUrl":null,"url":null,"abstract":"<p><p>Proper connections between cartilaginous and muscular primordia through tendinous/ligamentous primordia are essential for musculoskeletal integration. Herein, we report a novel double-reporter mouse model for investigating this process via fluorescently visualising scleraxis (Scx) and SRY-box containing gene 9 (Sox9) expression. We generated ScxTomato transgenic mice and crossed them with Sox9EGFP knock-in mice to obtain ScxTomato;Sox9EGFP mice. Deep imaging of optically cleared double-reporter embryos at E13.5 and E16.5 revealed previously unknown differences in the dynamic interactions between cartilaginous and tendinous/ligamentous primordia in control and Scx-deficient mice. Tendon/ligament maturation was evaluated through simultaneous detection of fluorescence and visualisation of collagen fibre formation using second harmonic generation imaging. Lack of deltoid tuberosity in Scx-deficient mice caused misdirected muscle attachment with morphological changes. Loss of Scx also dysregulated progenitor cell fate determination in the chondrotendinous junction, resulting in the formation of a rounded enthesis rather than the protruding enthesis observed in the control. Hence, our double-reporter mouse system, in combination with loss- or gain-of-function approaches, is a unique and powerful tool that could be used to gain a comprehensive understanding of musculoskeletal integration.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"152 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204512","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proper connections between cartilaginous and muscular primordia through tendinous/ligamentous primordia are essential for musculoskeletal integration. Herein, we report a novel double-reporter mouse model for investigating this process via fluorescently visualising scleraxis (Scx) and SRY-box containing gene 9 (Sox9) expression. We generated ScxTomato transgenic mice and crossed them with Sox9EGFP knock-in mice to obtain ScxTomato;Sox9EGFP mice. Deep imaging of optically cleared double-reporter embryos at E13.5 and E16.5 revealed previously unknown differences in the dynamic interactions between cartilaginous and tendinous/ligamentous primordia in control and Scx-deficient mice. Tendon/ligament maturation was evaluated through simultaneous detection of fluorescence and visualisation of collagen fibre formation using second harmonic generation imaging. Lack of deltoid tuberosity in Scx-deficient mice caused misdirected muscle attachment with morphological changes. Loss of Scx also dysregulated progenitor cell fate determination in the chondrotendinous junction, resulting in the formation of a rounded enthesis rather than the protruding enthesis observed in the control. Hence, our double-reporter mouse system, in combination with loss- or gain-of-function approaches, is a unique and powerful tool that could be used to gain a comprehensive understanding of musculoskeletal integration.

肌肉骨骼整合过程中软骨和肌腱/韧带原基之间的动态相互作用。
软骨原基和肌肉原基之间通过肌腱/韧带原基的适当连接对于肌肉骨骼整合至关重要。在此,我们报告了一种新的双报告小鼠模型,通过荧光可视化硬化轴(Scx)和含有基因9 (Sox9)表达的SRY-box来研究这一过程。我们将ScxTomato转基因小鼠与Sox9EGFP敲入小鼠杂交,得到ScxTomato;Sox9EGFP小鼠。在E13.5和E16.5时光学清除的双报告胚胎的深度成像揭示了对照组和scx缺陷小鼠中软骨和肌腱/韧带原基之间动态相互作用的未知差异。通过同时检测荧光和利用二次谐波成像观察胶原纤维形成来评估肌腱/韧带成熟程度。scx缺陷小鼠的三角结节缺失导致肌肉附着错位并伴有形态学改变。Scx基因缺失也会影响软骨腱连接处祖细胞命运的决定,导致形成圆形端部,而不是对照组中观察到的突出端部。因此,我们的双报告小鼠系统,结合功能丧失或功能获得方法,是一种独特而强大的工具,可用于全面了解肌肉骨骼整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信