The Effects of Encapsulating Bioactive Irish Honey into Pluronic-Based Thermoresponsive Hydrogels and Potential Application in Soft Tissue Regeneration.
Daniel P Fitzpatrick, Emma Browne, Carmel Kealey, Damien Brady, Siobhan Kavanagh, Sinead Devery, Noel Gately
{"title":"The Effects of Encapsulating Bioactive Irish Honey into Pluronic-Based Thermoresponsive Hydrogels and Potential Application in Soft Tissue Regeneration.","authors":"Daniel P Fitzpatrick, Emma Browne, Carmel Kealey, Damien Brady, Siobhan Kavanagh, Sinead Devery, Noel Gately","doi":"10.3390/gels11030215","DOIUrl":null,"url":null,"abstract":"<p><p>Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11030215","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Honey has been recognised for centuries for its potential therapeutic properties, and its application in wound healing has gained attention due to its antimicrobial, anti-inflammatory, and regenerative properties. With the rapid increase in multidrug resistance, there is a need for new or alternative approaches to traditional antibiotics. This paper focuses on the physicochemical changes that occur when formulating honey into Pluronic F127 hydrogels. The manual incorporation of honey, irrespective of quality type, presented the amelioration of Pluronic's capacity to undergo sol-gel transitions, as investigated by parallel plate rheology. This novel finding was attributed to the formation of fractal aggregates via the hydrogen-bonding-induced irreversible aggregation of honey-PF127 micelles, which subsequently dominate the entire hydrogel system to form a gel. The hydrogen bonding of micelles was identified through Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Light Scattering (DLS). This is the first known study to provide physicochemical insight into the effects that honey incorporation has on the thermogelation capacity of Pluronic F127 hydrogels for downstream dermal wound applications.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.