{"title":"Self-dispersible eutectic mixtures with fenofibrate and ibuprofen: Processability and API particle size.","authors":"Peter Schlosser, Heike Bunjes","doi":"10.1016/j.ejpb.2025.114701","DOIUrl":null,"url":null,"abstract":"<p><p>In order to increase the dissolution rate of poorly water-soluble drugs, the preparation of eutectics is a practical way to minimize the drug particle size without the need of grinding and handling of poorly flowing powders. The use of solid self-dispersible excipients as a component of the eutectic may further enhance the drug dissolution rate. In the current study, phase diagrams of eutectic mixtures of polyethylene glycol stearates and polyethylene glycol stearyl ethers differing in their polyethylene glycol chain lengths and two model drugs were established. Their processability and disintegration properties were investigated. Moreover, the resulting drug particle sizes in the eutectics were determined. The eutectic concentration and temperature of fusion of the eutectics increased with the melting temperature of the respective excipient. The eutectics with the self-dispersing excipients disintegrated faster than more conventional eutectics containing polyethylene glycols that were prepared for comparison. The drug particle sizes were smaller for mixtures with higher recrystallization tendency and with drug concentrations close to the eutectic concentration.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114701"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114701","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to increase the dissolution rate of poorly water-soluble drugs, the preparation of eutectics is a practical way to minimize the drug particle size without the need of grinding and handling of poorly flowing powders. The use of solid self-dispersible excipients as a component of the eutectic may further enhance the drug dissolution rate. In the current study, phase diagrams of eutectic mixtures of polyethylene glycol stearates and polyethylene glycol stearyl ethers differing in their polyethylene glycol chain lengths and two model drugs were established. Their processability and disintegration properties were investigated. Moreover, the resulting drug particle sizes in the eutectics were determined. The eutectic concentration and temperature of fusion of the eutectics increased with the melting temperature of the respective excipient. The eutectics with the self-dispersing excipients disintegrated faster than more conventional eutectics containing polyethylene glycols that were prepared for comparison. The drug particle sizes were smaller for mixtures with higher recrystallization tendency and with drug concentrations close to the eutectic concentration.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.